Horticultural Crop Irrigation

by
Bob Schultheis
Natural Resource Engineering Specialist

ISE \#78 Water Capture, Retention and Efficiency
Columbia, MO
December 13-14, 2012

UNIVERSITY OF MISSOURI

Horticultural Water Needs

If you take care of your soil, the soil will take care of your plants.

\checkmark Available Water Holding Capacity depends on:

- Soil texture
- Organic matter
- Rooting depth

Table 8. Available Water Holding Capacities for Several Soil Types

	Available Water Holding Capacity	
Soil Texture	In Inches per Inch of Soil	In Inches per Foot of Soil
Loamy fine sand	$0.08-0.12$	$0.96-1.44$
Sandy loam	$0.10-0.18$	$1.20-2.16$
Loam	$0.14-0.22$	$1.68-2.64$
Silt loam	$0.18-0.23$	$2.16-2.76$
Clay loam	$0.16-0.18$	$1.92-2.16$

USDA Soil Texture Classes

\checkmark Particle size

- Sand = 2.0-0.05 mm
- Silt $=0.05-0.002 \mathrm{~mm}$
- Clay $=<0.002 \mathrm{~mm}$
\checkmark Characteristics
- Sand adds porosity
- Silt adds body to the soil
- Clay adds chemical \& physical properties

Determining Soil Texture

\checkmark By feel

- Gritty, smooth, sticky

Using the jar method

- Fill a 1 -quart jar $1 / 4$ full of soil
- Fill the jar with water to $3 / 4$ full
- Add 1 teaspoon of dishwashing detergent

- Shake very well to suspend soil
- Place on a flat surface and allow soil to settle for 2 days
- Measure \% thickness of each layer relative to all

Benefits of Using Compost

\checkmark Improves drainage \& aeration of heavy clay soils
\checkmark Increases moisture-holding ability of sandy soils
\checkmark Increases earthworm \& soil microbial activity that benefit plant growth
Improves soil structure \& makes it easier to work Contains nutrients needed for plant growth

Soil Properties

\checkmark Soils store 1.5 "-2.5" of water per foot of depth (check county NRCS Soil Survey)
\checkmark Intake rate $=0.2 "-2.0 "$ per hour, rest is runoff Available SoliMoisture* $=$ \% of soil water between field capacity \& permanent wilting point = ranges by crop from 25% to 75%
Summer E.T. rate can be 0.25 " per day

- E.T. affected by radiation, humidity, air temperature, wind speed
\checkmark A 2-ft. deep soil at best holds a 9-15 day supply of available moisture for plants

Soil Drainage Classification

Drainage Class
 Matrix
 Mottle

Well Bright red None

Moderately well
Red
Gray
Somewhat poorly
Dull
Red
Poorly
All gray

Color Indicates Drainage

Captina Silt Loam

Tonti
Silt Loam

Scholten Gravelly ${ }_{11}$
Silt Loam

Water Needs Vary Widely

\checkmark By species \& within species by age of crop By soil type and time of year By location: outdoors vs. indoors
\checkmark Example: Tomatoes in high tunnels
> 12 oz./plant/day when first set
> Climbs gradually to 75 oz./plant/day upon maturity
Example: Greenhouses (container production)
> A general rule is to have available from 0.3 to 0.4 gallons/sq. ft. of growing area per day as a peak use rate

Size irrigation system for peak use

Relative Water Needs of Plants

Low
Spinach
Lettuce
Radish

Medium

High
Tomato
Asparagus

Medium Low Medium
Peas, Green Cabbage
Beans, Kale Broccoli
Pepper

Verv High
Sweet Corn, Muskmelon
Vine Squash

Watermelon
Pumpkin

Table 6. Effective Rooting Depth of Selected Vegetables

Shallow (6-12')	Moderate (18-24')	Deep (> 36')
Beet	Cabbage, Brussels Sprouts	Asparagus
Broccoli	Cucumber	Lima Bean
Carrot	Eggplant	Pumpkin
Cauliflower	Muskmelon	Sweet Potato
Celery	Pea	Watermelon
Greens \& Herbs	Potato	Squash, Winter
Onion	Snap Bean	
Pepper	Squash, Summer	
Radish	Sweet Corn	
Spinach	Tomato	

Table 7. Vegetable Crops and Growth Period Most Critical for Irrigation Requirements

Crop 1	Most Critical Period
broccoli, cabbage, cauliflower, lettuce	head development
carrot, radish, beet, turnip	root enlargement
sweet corn	silking, tasseling, and ear development
cucumber, eggplant, pepper, melon, tomato	flowering, fruit set, and maturation
bean, pea	flowering, fruit set, and development
onion	bulb development
potato	tuber set and enlargement

${ }^{1}$ For transplants, transplanting and stand establishment represent a most critical period for adequate water.

Most of the active root system for water uptake may be between 6 "-12"

Plants are 80-95\% Water

\checkmark Water shortages early in crop development = delayed maturity \& reduced yields
\checkmark Water shortages later in the growing season = quality often reduced, even if yields not hurt
\checkmark Short periods of 2-3 days of stress can hurt marketable yield
\checkmark Irrigation increases size \& weight of individual fruit \& helps prevent defects like toughness, strong flavor, poor tipfill \& podfill, cracking, blossom-end rot and misshapen fruit

Basic Watering Facts

\checkmark Plants need 1"-1.5" of water per week - 624-935 gallons (83-125 cu.ft.) per 1,000 sq.ft.
\checkmark Can survive drought on half that rate Deep infrequent waterings are better than several light waterings
\checkmark Deeper roots require less supplemental irrigation
\checkmark Taller plants have deeper roots

- Lowers tendency to wilt
- Shades soil surface
- Controls weeds by competition
- Makes water "go farther"

When to Water

\checkmark Rainfall less than 1" per week

- Keep a record of rainfall received
- Check soil moisture with long screwdriver
\checkmark It's getting bad when you see:
- Purple-blue wilting leaves
- Grass that leaves footprints
- Folded or rolled leaves

Don't wait to see wilting before watering

Best Time of Day to Water

\checkmark Early morning: 4 a.m. to 8 a.m.

- Evaporative losses minimized (no sun, calmer winds)
- Knocks dew and guttation fluid off leaf blades
- Lets plant leaves dry before evening to discourage fungal growth and infection

Measuring Water Needs

\checkmark "Feel" method - handful of soil Screwdriver method - force into soil
\checkmark Appearance of plants - wilt
\checkmark Calendar method - daily, 3rd day
\checkmark "Checkbook" method

- Tally total rainfall + irrigation against daily water use of plants
\checkmark Tensiometers
- Read scale of 0 (wet) to 100 (dry)
\checkmark Moisture resistance blocks

- Buried at depths in soil, check with meter

Measuring Water Needs ${ }_{2}$

Catch cans

4-cycle timer

Rain gauge

Plant Water Requirements ${ }_{3}$
 (Estimated design rates for southwest Missouri)

Gallons per 100 Feet of Row per Week
Minimum for plant survival
100
Lettuce, spinach, onions, carrots, 200 radishes, beets

Green beans, peas, kale 250

Tomatoes, cabbage, peppers,
300 potatoes, asparagus, pole beans

Corn, squash, cucumbers, pumpkins, 400-600 melons

Plant Water Requirements

(Design rates for southwest Missouri assuming no effective rainfall for >60 days.)

Fruit Crop	Plant \times Row Spacing, Ft.	Sq.Ft./ Plant	Plants/ Acre	Gal/Plant/Day Gal/Acre/Day
Apples	6×14	84	518	8
	18×26	468	93	4144
				42
			3906	
Peaches	15×20	300	145	28
	18×20	360	121	4060
				44
	8×10	80	540	4114
Grapes				10
	8×16	128	340	5440
				5440
	4×12	48	908	4
Blueberries	4×3			

Watering Blueberries

\checkmark Blueberries produce 75% of their roots on the east side of the plant

- Optimum growth occurs from $57^{\circ} \mathrm{F}$ to $61^{\circ} \mathrm{F}$

Source: David Bryla, USDA, Corvallis, OR 2012

Plant Water Requirements

(Design rates for southwest Missouri assuming no effective rainfall for >60 days.)

Gallons per 100 Feet of
 Row per Day

Fruit Crop

Strawberries

50
Raspberries \& Blackberries With mulch

75
Without mulch

Watering Trees

\checkmark Most roots in top 12" of soil

Root spread up to 4X tree crown spread

- Varies by tree species

Saturate at least 20% of root zone 12 " deep

How Much Water for Trees?

\checkmark Gallons needed for 1"

 water per week = Diameter x Diameter 2\checkmark Example \#1: $6 \mathrm{ft} . \times 6 \mathrm{ft} .=18 \mathrm{gal} . / \mathrm{wk}$. 2
\checkmark Example \#2: $20 \mathrm{ft} . \times 20 \mathrm{ft} .=200 \mathrm{gal} . / \mathrm{wk}$. 2

Formula: (Dia.' x Dia.' x $0.7854 \div 43,560$ sq.ft./ac.) x 27,154 gal./ac.-in.)

Watering Trees

"Gender bender" to improve uniformity of water flow

Soaker hose around drip line of tree

Sizing Horticulture Irrigation Systems

The Two Major Factors in

 Irrigation System Planning1. How much water do you need?
2. How much time do you have?

Water Source Quality

Good \checkmark Well $=$ check pH \& hardness Municipal = may be expensive Spring = may not be dependable \checkmark River or stream $=$ depends on runoff \checkmark Lake or pond water $=$ sand filters Pump to tank on hill

- Elevation dictates pressure (2.3 feet of head = 1 psi pressure)
- Watch for tank corrosion

Water Quality Analysis

\checkmark Inorganic solids $=$ sand, silt
\checkmark Organic solids = algae, bacteria, slime
Dissolved solids (<500 ppm)

- Iron \& Manganese
- Sulfates \& Chlorides
- Carbonates (calcium)
$\checkmark \mathrm{pH}$ (5.8-6.8 preferred)
\checkmark Hardness (<150 ppm)

Resource: soilplantlab.missouri.edu/soil/water.aspx

Plugging Potential of Drip Irrigation Systems

Moderate
 Severe (ppm)*
 (ppm)*

Factor

Physical
Suspended solids \quad 50-100 >100
Chemical

$\mathrm{pH}^{* *}$	$7.0-7.5$	>7.5
Dissolved solids	$500-2000$	>2000
Manganese	$0.1-1.5$	>1.5
Iron	$0.1-1.5$	>1.5
Hardness***	$150-300$	>300
Hydrogen sulfide	$0.5-2.0$	>2.0

* $\mathrm{ppm}=\mathrm{mg} / \mathrm{L} \quad$ ** pH is unitless \quad *** Hardness: $\mathrm{ppm}=\mathrm{gpg} \times 17$

Using Ponds for Irrigation

\checkmark Pond 8 ' deep, 100' dia. holds 280,000 gallons of water.
\checkmark One-half of water volume is usable for irrigation. Rest is seepage \& evaporation.
$\checkmark 20$ GPM demand for 20 hrs/day uses 24,000 gal/day.
\checkmark Pond holds about 6-day water supply.
\checkmark Water is least available when most needed!!

Pond Water Quality

\checkmark Grass filters sediment \& nutrients

$=0$
Copper sulfate controls algae \& slime

Bucket \& Jug Irrigation

\checkmark Labor-intensive
\checkmark Efficient water use
\checkmark Point-source application

- 0-2 psi system operating pressure
\checkmark Rates:

$-2 \mathrm{GPH}=5 / 64$ " hole (put in bottom of bucket)
-5 GPH $=1 / 8$ " hole

Estimating Water Quantity

\checkmark Household water demand

- GPM = Total count of toilets, sinks, tubs, hose bibs, etc. in home
Excess is available for irrigation
- Contact pump installer for capacity data
\checkmark Is pressure tank large enough?
- Stay within cycle limits of pump, OR
- Run the pump continuously

Home Water Flow Rates ${ }_{2}$

Number of Bathrooms in Home

$\begin{array}{llll}1 & 1.5 & 2 & 3\end{array}$
Bedrooms Flow Rate (Gallons Per Minute)

2	6	8	10	--
3	8	10	12	--
4	10	12	14	16
5	--	13	15	17
6	--	--	16	18

Pump Cycling Rate, Max.

Horsepower Rating

Cycles/ Hour

$$
\begin{array}{cc}
0.25 \text { to } 2.0 & 20 \\
3 \text { to } 5 & 15 \\
7.5,10,15 & 10 \\
\hline
\end{array}
$$

Pressure Tank Selection

Average Pressure, psi*

Tank Size, gallons
 40
 50
 60

Pumping Capacity, GPM

42	5	4	3
82	11	8	6
144	19	14	10
220	29	21	15
315	42	30	22

[^0]
Pressure Tanks

OR
variable pump speed controller

Multiple tanks

Soaker Hose

"Sweaty" hose
\checkmark Low pressure
」 1/2" - 5/8" dia.
0.1 -1.0 GPH per foot (not engineered)
\checkmark Lasts 7-10 years Good for gardens, shrub beds
\checkmark Expensive on large areas

Micro-Sprinkler

Good for landscape beds Uses more water than soaker hose More evaporation Wide range of spray patterns

- Spray range is 1.5-6 ft.

Not effective for frost control

Sprinkler Irrigation

」 1.5-8.5 GPM flow rate
•4-7 GPM water supply/acre for irrigation
, 45-60 GPM/acre for frost control from $25^{\circ} \mathrm{F}-20^{\circ} \mathrm{F}$.
$\checkmark 25-45$ psi system operating pressure

\checkmark Equipment \& labor tradeoff
\checkmark Cost $=\$ 500-\$ 700 /$ acre (?)

Sprinkler Irrigation 2

Oscillating sprinkler covers 3,500 sq.ft. rectangle

Traveling sprinkler covers 16,500 sq.ft. variable path

Sprinkler Irrigation

Whirling-head sprinkler covers 5 to 50 ft . diameter

Rotary or impulse sprinkler covers partial to full circles

How a Sprinkler Waters

One sprinkler applies a lot of water close in and less water farther away, so watering is uneven.

When sprinklers are set so that patterns overlap, the entire area gets an even amount of water.

Check Sprinkler Overlap

INCORRECT

- Poor uniformity
- Inadequate irrigation

INCORRECT

- Poor uniformity
- Wasted water

Drip Irrigation

\checkmark Also known as:

- Trickle irrigation
- Micro-irrigation
- Low-volume irrigation

Drip Irrigation

\checkmark 0.5-2.0 GPH flow rate per emitter
\checkmark 2-5 GPM/acre for water supply
\checkmark Point use gives less runoff, less evaporation, easier weed control, saves 30\%-50\% water
\checkmark Low pressure of 6-20 psi means smaller pumps \& pipes
\checkmark Can fertilize through system Do field work while irrigating

Drip Irrigation 3

Can automatically control
Susceptible to clogging
Must design system to carefully match equipment to elevation
Requires diligent management
Cost $=\$ 900-\$ 1200$ for 1st acre; \$600-\$800/acre for rest

Wetting Patterns (Drip)

Cross Section of Soil Showing Wetted Areas

Wetted Area Appearing on Soil Surface

Sandy \wp
 \square Clay

Cross Section of Wetted Area in Soil

Example Layout of Drip Irrigation System

Drip Irrigation Components

Power Supply

- Electric = 1st choice
- Gas, diesel, propane $=2 n d$ choice
- Gravity = ram pumps

Pump system

- Higher elevation = lower horsepower
- Size to elevation \& system pressure
- Pressure tank vs. throttling valve control

Drip Irrigation Components 2

Check valve(s)

- Stop backflow into water source
- Critical if fertigating

Filter system

- 150-200 mesh screen
- Manual or automatic backflushing
- If you can see particles, the system can plug

Filter Selection

Cartridge filter

- Best with well water on very small systems
- Made of paper or spun fiber
- Disposable or washable
- Install in pairs to avoid service downtime
- Clean when pressure loss exceeds 5-7 psi

Filter Selection

\checkmark Screen filter

- 150-200 mesh, 3/4" to 6" dia.
- Slotted PVC, perf. or mesh stainless steel or nylon mesh
- Manual or automatic flush

\checkmark Disc filter

- Stack of grooved wafers
- Provides more filter area than screen of same size
- Cannot handle sand well

Filter Selection 3

Sand media

- 14" to 48" diameter
- Use swimming pool filter for smaller systems
- Use pairs of canisters for larger systems
- \#16 silica sand = 150-200 mesh screen
- Work best at < 20 GPM flow per square foot of media
- Follow with screen filters

- Backflush to clean

Drip Irrigation Components ${ }_{3}$

Pressure regulation

- Depends on field slope \& pipe layout
- In-line regulators

- Pressure tank(s) = match to pump cycle rate to avoid pump burnout
Solenoid valves
- Low-voltage water control valves
- Mount above ground for easy service

Solenoid Valves

\checkmark Low-voltage water control valves

 \checkmark Mount above ground for easy service
Drip Irrigation Components

\checkmark Controller

- Time clock switches solenoid valves

Mainline

- Carry water to each irrigation block
- Buried 1.5" - 3" dia. PVC pipe

Manifolds

- Meter water from mainlines to laterals
- Buried 3/4" - 2" PVC or PE pipes

Controller

\checkmark Protect controllers from weather \& pests
\checkmark Use proper wiring (Type UF or USE)

Drip Irrigation Components 5

Laterals

- Carry water down rows to the plants
- Surface or buried 3/8" - 3/4" PE pipe
- Thin-wall "tape" for close-growing crops

Emitters

- Deliver water to the plants
- 0.5-2 GPH "in-line" or "on-line" units
- Pressure-compensating or not

Laterals \& Emitters

\checkmark Operating pressure in laterals

- Thin-wall "tape" = 4-8 psi
- Non-P.C. emitters $=8-15 \mathrm{psi}$
- P.C. emitters = 10-60 psi

Max. pressure variation in plant block $=20$ psi (+/- 10 psi)

Laterals \& Emitters ${ }_{2}$

\checkmark Extend laterals 10-20 ft. past row end to serve as debris trap
\checkmark Use air relief valve at high point of each plant block to stop shutoff suction

Design Considerations

Water supply capacity
Hours of operation per day
Field size, shape \& elevation

- 2.31 feet elevation change = 1 psi pressure change
- Design for +/- 10\% or less flow variation

Plant spacing
Row spacing

Design Considerations 2

\checkmark Emitter selection \& location
Clogging control - air relief valve
Burial and draining

- Frostline depth = 24"- 30"
- Flush with air

Pipe protection
under roadways
Animal damage
Expansion

Planning Your System

Make a field plan

- Show field size, shape, elevation contours
- Show distance to water source, electricity
- Note soil type, climate, air drainage
- Example: Two acres grapes a. 290' x 300' field, 4.0% slope across rows, 2.3\% along row b. 37 plants per row 8 ' o.c., 28 rows 10 ' o.c., c. Irrigate up to 20 hrs./day

Sample Field Plan

Slope Measurement by Elevation Change

Two types of instruments

- Builder's level and measuring rod
- Line level + string + tape measure + stake

Slope in \% = (vertical / horizontal) x 100

Slope Measurement by Direct Reading

Two types of instruments

- Clinometer (Abney level)
- "Smart" level (electronic)

Plant Water Requirements

(Design rates for southwest Missouri assuming no effective rainfall for >60 days.)

Fruit Crop	Plant \times Row Spacing, Ft.	Sq.Ft./ Plant	Plants/ Acre	Gal/Plant/Day Gal/Acre/Day
Apples	6×14	84	518	8
	18×26	468	93	4144 42
Peaches	15×20	300	145	3906 28
	18×20	360	121	4060 34
	8×10	80	540	114

Planning Your System ${ }_{2}$

Calculate minimum pumping capacity needed \& compare to water source

- GPD = Gallon/plant/day x \# of plants Example: Two acres 8' x 10' grapes 10 GPD x 1,080 plants $=10,800$ gal. per 20 hr . day $=540 \mathrm{GPH}$
$=9.0 \mathrm{GPM}$

Planning Your System ${ }_{3}$

Calculate area irrigated at once

- \# of plants = Well capacity / GPH applic. rate
- Allow for home water demand
- Balance well cap. to row length \& block size
- Example: 3 BR, 1 1/2 bath home \& 19 GPM well a. Home needs 10 GPM, so field gets 9 GPM
b. (9 GPM well cap. $\times 60 \mathrm{~min} / \mathrm{hr}$) $\div 1 \mathrm{GPH} /$ plant = 540 plants
c. 540 plants / 37 plants/row ≈ 14 rows at once
d. 28 total rows / 14 rows/block = 2 blocks
e. 2 blocks $\times 10$ GPD/plant $\div 1$ GPH/em. $=20$ hrs.

Pumping Head Calculations

\checkmark Total head in feet is the sum of:

- Elevation from water source to high point
- Pipe friction loss
- Discharge pressure
- Miscellaneous friction loss of elbows, risers, valves, etc.
\checkmark Remember conversion of:

$$
2.31 \text { feet = } 1 \text { psi }
$$

Friction Loss Design

Size piping for 1 psi or less pressure loss per 100 feet
\checkmark Pipe friction may replace pressure regulators on downhill runs
Vary flowrate no more than 20\% (+/-10\%) within each block of plants
Manifolds attached to mainline...

- at center if $<3 \%$ slope
- at high point if 3+\% slope

Plastic Pipe Friction Loss

Pipe Diameter, inches
0.75" 1 1" $1.5^{\prime \prime} \quad 2 "$

GPM

5	2.8	0.8	0.1	--
10	11.3	3.0	0.4	0.1
15	21.6	6.4	0.8	0.2
20	37.8	10.9	1.3	0.4
25	--	16.7	1.9	0.6
30	--	--	2.7	0.8

Sample Field Plan ${ }_{2}$

Troubleshooting Guide

Symptom

Reddish-brown slime or particles near emitters

White stringy masses of slime near emitters

Green or slimy matter in surface water

White film on tape or around emitters
Presence of silt or clay

Possible Causes

Bacteria feeding on iron

Bacteria feeding on sulfur

Algae or fungi

Calcium salts or carbonates

Inadequate filtration

Chemical Injection .

\checkmark Kill bacteria \& slime
 - Chlorine needs "contact time"
 - Powdered HTH can plug emitters

CAUTION: contalns sodium HYPOCHLORITE, 5.25% BY WEGHIT GMGES SUBSTANTIAL BUT TEMP URARY EYE INJURY. VIAY IRRIIAIIE SKIN. HARMFUL IF SWALLOWED. DO NOT GET IN EYES, ON SKIN, OR ON CLOTHING.
FIRST AID: IF IN EYES, REMOVE CONTACT LENSES
AND RINSE WITH PIENTY OF WATER FOR 15 MINUTES.
IF SWALLOWED, DRINK GLASS OF WATER. CONTAGT
A PHYSICIAN OR POISON CONTROL CENTER
IMMEDIATELY. IF IN GONTACT WITH SKIN,
MMMEDIATELY IF IN GONTACT WITH SKIN,
AND DIATELY REMOVE CONTAMINATED CLOI

Chemical Injection ${ }_{2}$

\checkmark Control pH with acid

- Help acidify soil for plants (blueberries)
- Dissolve Mn, Fe, Ca precipitates
- Make chemicals work better

Rust \& silt
Algaecide

Chemical Injection ${ }_{3}$

\checkmark Apply fertilizer

- Be sure it's 100% water-soluble
- Always inject it two elbows before the filter for good mixing

Horticulture Irrigation Exercise

Design a Drip System for Tomatoes

Irrigation Resources on the Web

\checkmark Irrigation System Planning \& Management Links extension.missouri.edu/webster/irrigation/
\checkmark Missouri Digital Soil Survey soils.missouri.edu/

Questions??

Robert A. (Bob) Schultheis
 Natural Resource Engineering Specialist

Webster County Extension Center 800 S. Marshall St.
Marshfield, MO 65706
Voice: 417-859-2044
Fax: 417-468-2086
E-mail: schultheisr@missouri.edu Web: extension.missouri.edu/webster

UNIVERSITY OF MISSOURI EXxtension

Program Complaint Information

To file a program complaint you may contact any of the following:

University of Missouri

- MU Extension AA/EEO Office 109 F. Whitten Hall, Columbia, MO 65211
- MU Human Resources Office 130 Heinkel Bldg, Columbia, MO 65211

USDA

- Office of Civil Rights, Director Room 326-W, Whitten Building 14th and Independence Ave., SW Washington, DC 20250-9410

[^1]
[^0]: * Cut-in pressure $+10 \mathrm{psi}=$ Avg. Pressure $=$ Cut-out pressure -10 psi

[^1]: "Equal opportunity is and shall be provided to all participants in Extension programs and activities, and for all employees and applicants for employment on the basis of their demonstrated ability and competence without discrimination on the basis of their race, color, religion, sex, sexual orientation, national origin, age, disability, or status as a Vietnam-era veteran. This policy shall not be interpreted in such a manner as to violate the legal rights of religious organizations or military organizations associated with the armed forces of the United States of America."

