Horticultural Crop Irrigation

by Bob Schultheis Natural Resource Engineering Specialist

ISE #78 Water Capture, Retention and Efficiency Columbia, MO December 13-14, 2012

Horticultural Water Needs

If you take care of your soil, the soil will take care of your plants.

- Available Water Holding Capacity depends on:
 - Soil texture
 - Organic matter
 - Rooting depth

Table 8. Available Water Holding Capacities for Several Soil Types

	Available Water Holding Capacity		
Soil Texture	In Inches per Inch of Soil	In Inches per Foot of Soil	
Loamy fine sand	0.08-0.12	0.96-1.44	
Sandy loam	0.10-0.18	1.20-2.16	
Loam	0.14-0.22	1.68-2.64	
Silt loam	0.18-0.23	2.16-2.76	
Clay loam	0.16-0.18	1.92-2.16	

USDA Soil Texture Classes

Particle size

- Sand = 2.0-0.05 mm
- Silt = 0.05-0.002 mm
- Clay = <0.002 mm
- **Characteristics**
 - Sand adds porosity
 - Silt adds body to the soil
 - Clay adds chemical
 & physical properties

Determining Soil Texture

By feel

- Gritty, smooth, sticky
- Using the jar method
 - Fill a 1-quart jar ¼ full of soil
 - Fill the jar with water to ³/₄ full
 - Add 1 teaspoon of dishwashing detergent
 - Shake very well to suspend soil
 - Place on a flat surface and allow soil to settle for 2 days
 - Measure % thickness of each layer relative to all

Benefits of Using Compost

- Improves drainage & aeration of heavy clay soils
- Increases moisture-holding ability of sandy soils
- Increases earthworm & soil microbial activity that benefit plant growth
- Improves soil structure & makes it easier to work
- Contains nutrients needed for plant growth

Soil Properties

- Soils store 1.5"-2.5" of water per foot of depth (check county NRCS Soil Survey)
- Intake rate = 0.2"-2.0" per hour, rest is runoff
- Available Soil Moisture* = % of soil water between field capacity & permanent wilting point = ranges by crop from 25% to 75%
- Summer E.T. rate can be 0.25" per day
 - E.T. affected by radiation, humidity, air temperature, wind speed
- A 2-ft. deep soil at best holds a 9-15 day supply of available moisture for plants

Checking Soil Drainage

- Perched water table
- Fragipan on upland soils
 - Standing water after a rain

Soil Drainage Classification

Drainage Class	Matrix	Mottle
Well	Bright red	None
Moderately well	Red	Gray
Somewhat poorly	Dull	Red
Poorly		All gray

Color Indicates Drainage

Captina Silt Loam

Tonti Silt Loam

Scholten Gravelly Silt Loam

Water Needs Vary Widely

- By species & within species by age of crop
- By soil type and time of year
 - By location: outdoors vs. indoors
 - Example: Tomatoes in high tunnels
 - 12 oz./plant/day when first set
 - Climbs gradually to 75 oz./plant/day upon maturity
 - Example: Greenhouses (container production)
 - A general rule is to have available from 0.3 to 0.4 gallons/sq. ft. of growing area per day as a peak use rate

Size irrigation system for peak use

Relative Water Needs of Plants

<u>Low</u> Spinach Lettuce Radish <u>Medium Low</u> Peas, Green Beans, Kale <u>Medium</u>

Cabbage Broccoli Pepper

<u>Medium</u> <u>High</u> Tomato Asparagus

<u>High</u>

Sweet Corn, Vine Squash <u>Very High</u>

Muskmelon Watermelon Pumpkin

Shallow (6-12")	Moderate (18-24")	Deep (> 36")
Beet	Cabbage, Brussels Sprouts	Asparagus
Broccoli	Cucumber	Lima Bean
Carrot	Eggplant	Pumpkin
Cauliflower	Muskmelon	Sweet Potato
Celery	Pea	Watermelon
Greens & Herbs	Potato	Squash, Winter
Onion	Snap Bean	
Pepper	Squash, Summer	
Radish	Sweet Corn	
Spinach	Tomato	

Table 7. Vegetable Crops and Growth Period Most Critical for Irrigation Requirements

Crop ¹	Most Critical Period		
broccoli, cabbage, cauliflower, lettuce	head development		
carrot, radish, beet, turnip	root enlargement		
sweet corn	silking, tasseling, and ear development		
cucumber, eggplant, pepper, melon, tomato	flowering, fruit set, and maturation		
bean, pea	flowering, fruit set, and development		
onion	bulb development		
potato	tuber set and enlargement		

¹For transplants, transplanting and stand establishment represent a most critical period for adequate water.

Most of the active root system for water uptake may be between 6"-12"

Reference: irrigationtraining.tamu.edu/docs/irrigation-training/south/crop-guidelines/estimatedwaterrequirementsvegetablecrops.pdf

Plants are 80-95% Water

- Water shortages early in crop development
 = delayed maturity & reduced yields
- Water shortages later in the growing season
 = quality often reduced, even if yields not hurt
- Short periods of 2-3 days of stress can hurt marketable yield
 - Irrigation increases size & weight of individual fruit & helps prevent defects like toughness, strong flavor, poor tipfill & podfill, cracking, blossom-end rot and misshapen fruit

Period: 1961-1990

derived; the modeled grid was approximately 4x4 km latitude/longitude, and was resampled to 2x2 km using a Gaussian filter. Mapping was performed by Jenny Weisburg. Funding was provided by NRCS Water and Climate Center.

Basic Watering Facts

- Plants need 1"-1.5" of water per week
 - 624-935 gallons (83-125 cu.ft.) per 1,000 sq.ft.
- Can survive drought on half that rate
- Deep infrequent waterings are better than several light waterings
- Deeper roots require less supplemental irrigation

- ROOTING
- ✓ Taller plants have deeper roots
 - Lowers tendency to wilt
 - Shades soil surface
 - Controls weeds by competition
 - Makes water "go farther"

When to Water

Rainfall less than 1" per week

- Keep a record of rainfall received
- Check soil moisture with long screwdriver
- It's getting bad when you see:
 - Purple-blue wilting leaves
 - Grass that leaves footprints
 - Folded or rolled leaves

- Don't wait to see wilting before watering

Best Time of Day to Water

Early morning: 4 a.m. to 8 a.m.

- Evaporative losses minimized (no sun, calmer winds)
- Knocks dew and guttation fluid off leaf blades
- Lets plant leaves dry before evening to discourage fungal growth and infection

Measuring Water Needs 1

- "Feel" method handful of soil
- Screwdriver method force into soil
- Appearance of plants wilt
- Calendar method daily, 3rd day
 - "Checkbook" method
 - Tally total rainfall + irrigation against daily water use of plants

Tensiometers

- Read scale of 0 (wet) to 100 (dry)
- Moisture resistance blocks

- "ZONE OF MOISTURE CONTROL"
- Buried at depths in soil, check with meter

Measuring Water Needs 2

4-cycle timer

Rain gauge

Plant Water Requirements 3

(Estimated design rates for southwest Missouri)

Vegetable Crop (mature)	<i>Gallons per 100 Feet of Row per Week</i>
Minimum for plant survival	100
Lettuce, spinach, onions, carrots, radishes, beets	200
Green beans, peas, kale	250
Tomatoes, cabbage, peppers, potatoes, asparagus, pole beans	300
Corn, squash, cucumbers, pumpkins, melons	400-600

Plant Water Requirements 1

(Design rates for southwest Missouri assuming no effective rainfall for >60 days.)

Fruit Crop	Plant x Row Spacing, Ft.	Sq.Ft./ Plant	Plants/ Acre	Gal/Plant/Day Gal/Acre/Day
Apples	6 x 14	84	518	8 4144
	18 x 26	468	93	42 3906
Peaches	15 x 20	300	145	28 4060
	18 x 20	360	121	34 4114
Grapes	8 x 10	80	540	10 5440
	8 x 16	128	340	16 5440
Blueberries	4 x 12	48	908	4 3632

23

Watering Blueberries

Blueberries produce
 75% of their roots on
 the east side of the
 plant

 Optimum growth occurs from 57°F to 61°F

Source: David Bryla, USDA, Corvallis, OR 2012

Plant Water Requirements 2

(Design rates for southwest Missouri assuming no effective rainfall for >60 days.)

100 Feet of
Row per Day 50
75 100

Watering Trees

 Most roots in top 12" of soil
 Root spread up to 4X tree crown spread

- Varies by tree species
- Saturate at least
 20% of root zone
 12" deep

How Much Water for Trees?

Gallons needed for 1" water per week = **Diameter x Diameter** Example #1: <u>6 ft. x 6 ft.</u> = 18 gal./wk. Example #2: <u>20 ft. x 20 ft.</u> = 200 gal./wk.

Formula: (Dia.' x Dia.' x 0.7854 ÷ 43,560 sq.ft./ac.) x 27,154 gal./ac.-in.)

Watering Trees

Soaker hose around drip line of tree

"Gender bender" to improve uniformity of water flow

Sizing Horticulture Irrigation Systems

The Two Major Factors in Irrigation System Planning

1. How much <u>water</u> do you need?

2. How much <u>time</u> do you have?

Water Source Quality

Good

Poor

Well = check pH & hardness
 Municipal = may be expensive
 Spring = may not be dependable
 River or stream = depends on runoff
 Lake or pond water = sand filters
 Pump to tank on hill

- Elevation dictates pressure
 (2.3 feet of head =
 1 psi pressure)
- Watch for tank corrosion

Water Quality Analysis

Inorganic solids = sand, silt

Organic solids = algae, bacteria, slime

/ Dissolved solids (<500 ppm)</p>

- Iron & Manganese
- Sulfates & Chlorides
- Carbonates (calcium)

pH (5.8-6.8 preferred)Hardness (<150 ppm)

Resource: soilplantlab.missouri.edu/soil/water.aspx

PVC Casing

Plugging Potential of Drip Irrigation Systems

Factor	(ppm)*	(ppm)*
Physical Suspended solids	50-100	>100
Chemical pH** Dissolved solids Manganese Iron Hardness*** Hydrogen sulfide	7.0-7.5 500-2000 0.1-1.5 0.1-1.5 150-300 0.5-2.0	>7.5 >2000 >1.5 >1.5 >300 >2.0

* ppm = mg/L ** pH is unitless

*** Hardness: ppm = gpg x 17

Using Ponds for Irrigation

- Pond 8' deep, 100' dia. holds 280,000 gallons of water.
- One-half of water volume is usable for irrigation. Rest is seepage & evaporation.
- 20 GPM demand for 20 hrs/day uses 24,000 gal/day.
- Pond holds about 6-day water supply.
- Water is least available when most needed!!

Pond Water Quality

Grass filters sediment & nutrients

Copper sulfate controls algae & slime

Bucket & Jug Irrigation

- Labor-intensive
 Efficient water use
 Point-source application
 - 0-2 psi system operating pressure
 - Rates:

- 2 GPH = 5/64" hole (put in bottom of bucket)
- -5 GPH = 1/8" hole

Estimating Water Quantity

Household water demand

- GPM = Total count of toilets, sinks, tubs, hose bibs, etc. in home
- Excess is available for irrigation
 - Contact pump installer for capacity data
- Is pressure tank large enough?
 - Stay within cycle limits of pump, OR
 - Run the pump continuously

Home Water Flow Rates 2

	Number of Bathrooms in Home					
	1	1.5	2	3		
Bedrooms	Flow Rate (Gallons Per Minute)					
2	6	8	10			
3	8	(10)	12			
4	10	12	14	16		
5		13	15	17		
6			16	18		

Source: extension.missouri.edu/p/G1801

Pump Cycling Rate, Max.

Horsepower Rating	Cycles/ Hour 20
0.25 to 2.0	20
3 to 5	15
7.5, 10, 15	10

Pressure Tank Selection

	Average Pressure, psi*				
Tank Size, gallons	40	50	60		
	Pumping Capacity, GPM				
42	5	4	3		
82	11	8	6		
144	19	14	10		
220	29	21	15		
315	42	30	22		

Pressure Tanks

Larger tank

OR variable pump speed controller

Multiple tanks

Soaker Hose

"Sweaty" hose Low pressure ✓ 1/2" - 5/8" dia. ✓ 0.1 - 1.0 GPH per foot (not engineered) Lasts 7-10 years Good for gardens, shrub beds Expensive on large areas

Micro-Sprinkler

Good for landscape beds Uses more water than soaker hose More evaporation Wide range of spray patterns - Spray range is 1.5-6 ft. Not effective for frost control

Sprinkler Irrigation ¹

1.5-8.5 GPM flow rate

- 4-7 GPM water supply/acre for irrigation
 - 45-60 GPM/acre for frost control from 25°F-20°F.
 - 25-45 psi system operating pressure
 - Equipment & labor tradeoff
- Cost = \$500-\$700/acre (?)

Traveling sprinkler covers 16,500 sq.ft. variable path

45

Sprinkler Irrigation ³

Whirling-head sprinkler covers 5 to 50 ft. diameter

Rotary or impulse sprinkler covers partial to full circles

46

How a Sprinkler Waters

One sprinkler applies a lot of water close in and less water farther away, so watering is uneven.

When sprinklers are set so that patterns overlap, the entire area gets an even amount of water.

Check Sprinkler Overlap

CORRECT

- High uniformity
- No waste

INCORRECT

- Poor uniformity
- Inadequate irrigation

INCORRECT

- Poor uniformity
- Wasted water

Drip Irrigation 1

- Also known as:
 - Trickle irrigation
 - Micro-irrigation
 - Low-volume irrigation

Drip Irrigation ²

0.5-2.0 GPH flow rate per emitter

- 2-5 GPM/acre for water supply
 - Point use gives less runoff, less evaporation, easier weed control, saves 30%-50% water
 - Low pressure of 6-20 psi means smaller pumps & pipes
- Can fertilize through system
- ✓ Do field work while irrigating

Drip Irrigation 3

- Can automatically control
- Susceptible to clogging
- Must design system to carefully match equipment to elevation
 - Requires diligent management
- Cost = \$900 \$1200 for 1st acre; \$600 - \$800/acre for rest

Wetting Patterns (Drip)

Clay

Clay

5' to 7'

52

Example Layout of Drip Irrigation System

Drip Irrigation Components 1

Power Supply

- Electric = 1st choice
- Gas, diesel, propane = 2nd choice
- Gravity = ram pumps
- Pump system
 - Higher elevation = lower horsepower
 - Size to elevation & system pressure
 - Pressure tank vs. throttling valve control

Drip Irrigation Components ²

Check valve(s)

- Stop backflow into water source
- Critical if fertigating
- Filter system
 - 150-200 mesh screen
 - Manual or automatic backflushing
 - If you can see particles, the system can plug

Filter Selection 1

Cartridge filter

- Best with well water on very small systems
- Made of paper or spun fiber
- Disposable or washable
- Install in pairs to avoid service downtime
- Clean when pressure loss exceeds 5-7 psi

Filter Selection 2

Screen filter

- 150-200 mesh, 3/4" to 6" dia.
- Slotted PVC, perf. or mesh stainless steel or nylon mesh
- Manual or automatic flush
- Disc filter
 - Stack of grooved wafers
 - Provides more filter area than screen of same size
 - Cannot handle sand well

Filter Selection 3

Sand media

- 14" to 48" diameter
- Use swimming pool filter for smaller systems
- Use pairs of canisters for larger systems
- #16 silica sand = 150-200 mesh screen
- Work best at < 20 GPM flow per square foot of media
- Follow with screen filters
- Backflush to clean

Drip Irrigation Components 3

Pressure regulation

- Depends on field slope & pipe layout
- In-line regulators

- Pressure tank(s) = match to pump
 cycle rate to avoid pump burnout
- Solenoid valves
 - Low-voltage water control valves
 - Mount above ground for easy service

Solenoid Valves

Low-voltage water control valves
 Mount above ground for easy service

Drip Irrigation Components 4

Controller

Time clock switches solenoid valves

Mainline

- Carry water to each irrigation block
- Buried 1.5" 3" dia. PVC pipe

Manifolds

- Meter water from mainlines to laterals
- Buried 3/4" 2" PVC or
 PE pipes

Controller

Protect controllers from weather & pests

 Use proper wiring (Type UF or USE)

Drip Irrigation Components 5

Laterals

- Carry water down rows to the plants
- Surface or buried
 3/8" 3/4" PE pipe
- Thin-wall "tape" for close-growing crops

Emitters

- Deliver water to the plants
- 0.5 2 GPH "in-line" or "on-line" units
- Pressure-compensating or not

Laterals & Emitters 1

Operating pressure in laterals

- Thin-wall "tape" = 4-8 psi
- Non-P.C. emitters = 8-15 psi
- P.C. emitters = 10-60 psi
- Max. pressure variation in plant block = 20 psi (+/- 10 psi)

Laterals & Emitters 2

 Extend laterals 10-20 ft.
 past row end to serve as debris trap

Use air relief valve at high point of each plant block to stop shutoff suction

Laterals & Emitters 3

Split water flow for low-use plants

E

Roll up & store laterals at end of season

Design Considerations 1

23'

 Water supply capacity Hours of operation per day Field size, shape & elevation 2.31 feet elevation change = 1 psi pressure change Design for +/- 10% or less flow variation Plant spacing

Row spacing

Design Considerations ²

Emitter selection & location Clogging control - air relief valve Burial and draining - Frostline depth = 24"- 30" Flush with air Pipe protection under roadways Animal damage Expansion

Planning Your System 1

Make a field plan

- Show field size, shape, elevation contours
- Show distance to water source, electricity
- Note soil type, climate, air drainage
- Example: Two acres grapes
 - a. 290' x 300' field, 4.0% slope across rows, 2.3% along row
 - b. 37 plants per row 8' o.c., 28 rows 10' o.c.,
 - c. Irrigate up to 20 hrs./day

Sample Field Plan 1

70

Slope Measurement by Elevation Change **Two types of instruments** - Builder's level and measuring rod - Line level + string + tape measure + stake vertical (feet) C horizontal (feet) Slope in % = (vertical / horizontal) x 100

71

Slope Measurement by Direct Reading

Two types of instruments

- Clinometer (Abney level)
- "Smart" level (electronic)

Plant Water Requirements

(Design rates for southwest Missouri assuming no effective rainfall for >60 days.)

Fruit Crop	Plant x Row Spacing, Ft.	Sq.Ft./ Plant	Plants/ Acre	Gal/Plant/Day Gal/Acre/Day
Apples	6 x 14	84	518	8 4144
	18 x 26	468	93	42 3906
Peaches	15 x 20	300	145	28 4060
	18 x 20	360	121	34 4114
Grapes	8 x 10	80	540	10 5440
	8 x 16	128	340	16 5440
Blueberries	4 x 12	48	908	4 3632

Planning Your System 2

Calculate minimum pumping capacity needed & compare to water source

GPD = Gallon/plant/day x # of plants
 Example: Two acres 8' x 10' grapes
 10 GPD x 1,080 plants = 10,800 gal.
 per 20 hr. day = 540 GPH

= 9.0 GPM

Planning Your System 3

Calculate area irrigated at once

- # of plants = Well capacity / GPH applic. rate
- Allow for home water demand
- Balance well cap. to row length & block size
- Example: 3 BR, 1 1/2 bath home & 19 GPM well
 a. Home needs 10 GPM , so field gets 9 GPM
 - b. (9 GPM well cap. x 60 min/hr) ÷ 1 GPH/plant = 540 plants
 - c. 540 plants / 37 plants/row \approx **14 rows at once**
 - d. 28 total rows / 14 rows/block = 2 blocks
 - e. 2 blocks x 10 GPD/plant ÷ 1 GPH/em. = 20 hrs.

Pumping Head Calculations

✓ Total head in feet is the sum of:

- Elevation from water source to high point
- Pipe friction loss
- Discharge pressure
- Miscellaneous friction loss of elbows, risers, valves, etc.
- Remember conversion of: 2.31 feet = 1 psi

Friction Loss Design

- Size piping for 1 psi or less pressure loss per 100 feet
- Pipe friction may replace pressure regulators on downhill runs
 - Vary flowrate no more than 20% (+/- 10%) within each block of plants
- Manifolds attached to mainline...
 - at center if < 3% slope
 - at high point if 3+% slope

Plastic Pipe Friction Loss

	Pipe Diameter, inches					
	0.75"	1"	1.5"	2"		
GPM	PSI Loss per 100 ft. of pipe					
5	2.8	0.8	0.1			
10	11.3	3.0	0.4	0.1		
15	21.6	6.4	0.8	0.2		
20	37.8	10.9	1.3	0.4		
25		16.7	1.9	0.6		
30			2.7	0.8		

Sample Field Plan 2

Troubleshooting Guide

Symptom

Reddish-brown slime or particles near emitters

White stringy masses of slime near emitters

Green or slimy matter in surface water

White film on tape or around emitters

Presence of silt or clay

Possible Causes

Bacteria feeding on iron

Bacteria feeding on sulfur

Algae or fungi

Calcium salts or carbonates

Inadequate filtration

Chemical Injection ¹

Kill bacteria & slime

- Chlorine needs "contact time"
- Powdered HTH can plug emitters

Chemical Injection ²

Control pH with acid

- Help acidify soil for plants (blueberries)
- Dissolve Mn, Fe, Ca precipitates

Make chemicals work better

Chemical Injection ³

Apply fertilizer

- Be sure it's 100% water-soluble
- Always inject it two elbows before the filter for good mixing

Horticulture Irrigation Exercise

Design a Drip System for Tomatoes

Irrigation Resources on the Web

Irrigation System Planning & Management Links <u>extension.missouri.edu/webster/irrigation/</u>

Missouri Digital Soil Survey soils.missouri.edu/

Questions??

Robert A. (Bob) Schultheis Natural Resource Engineering Specialist Webster County Extension Center 800 S. Marshall St. Marshfield, MO 65706 Voice: 417-859-2044 Fax: 417-468-2086 E-mail: schultheisr@missouri.edu Web: extension.missouri.edu/webster

UNIVERSITY OF MISSOURI Extension

Program Complaint Information

To file a program complaint you may contact any of the following:

University of Missouri

- MU Extension AA/EEO Office 109 F. Whitten Hall, Columbia, MO 65211
- MU Human Resources Office 130 Heinkel Bldg, Columbia, MO 65211

USDA

Office of Civil Rights, Director
 Room 326-W, Whitten Building
 14th and Independence Ave., SW
 Washington, DC 20250-9410

"Equal opportunity is and shall be provided to all participants in Extension programs and activities, and for all employees and applicants for employment on the basis of their demonstrated ability and competence without discrimination on the basis of their race, color, religion, sex, sexual orientation, national origin, age, disability, or status as a Vietnam-era veteran. This policy shall not be interpreted in such a manner as to violate the legal rights of religious organizations or military organizations associated with the armed forces of the United States of America."