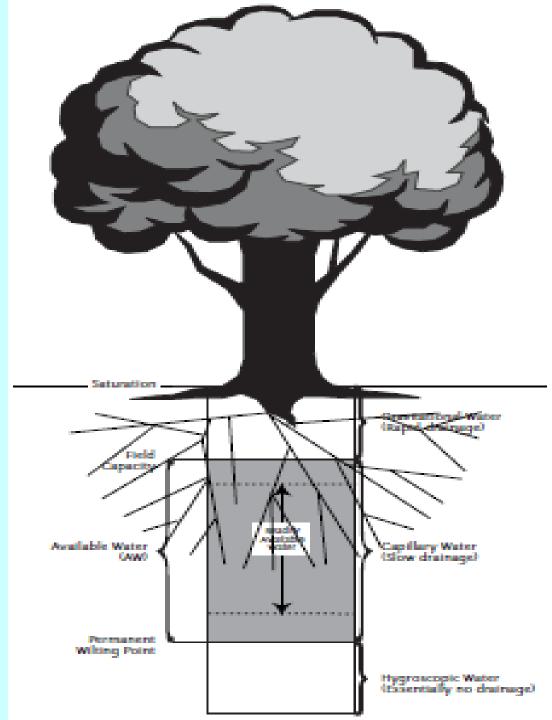

UNIV. of MISSOURI EXTENSION PRESENTATION OCTOBER 2012

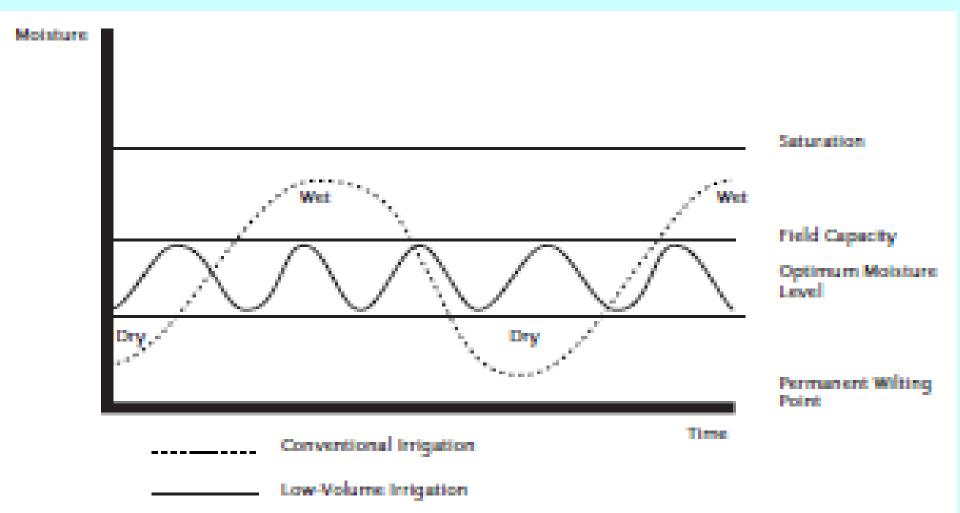
CRAIG PISARKIEWICZ MPR SUPPLY COMPANY 314-575-6505 CRAIG@MPRSUPPLY.COM

Misconceptions

"I can't apply enough water with drip" Water is applied directly to roots instead of entire soil volume Water not available for plant uptake



Minimize deep percolation


AVAILABLE WATER

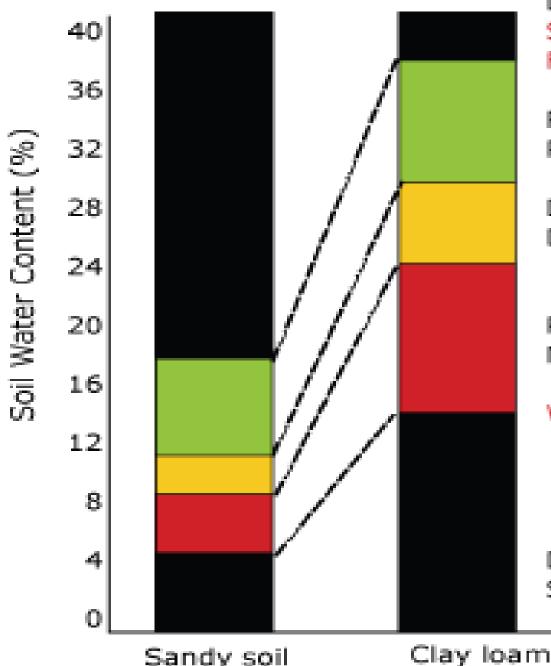
• The water must be in the plant root zone.

• The soil water holding capacity must be between Field Capacity and the Permanent Wilting Point.

Drip irrigation is the only way to keep soil moisture at an Optimum Moisture Level.

<u>Advantages of a Properly</u> <u>Designed Drip Irrigation System</u>

- Labor savings
- Increases Yields
- Improves Water Penetration
- Water Savings
- Equipment Cost Savings
- Power Saving
- Most Efficient Means of Fertilization
- Promotes Better Growth on Slopes


- Water Source
 - Lake/Pond/River
 - Well
 - Municipal Water Supply
- Water Quality
 - A Water Test Will Be Needed to Determine Water Quality
- Water Quantity
 - 15 to 20 GPM per Acre

- Layout Schematic
 - Number of Rows
 - Distance Between Rows
 - Distance Between Plants
 - Distance of Water Source from Field
 - Elevation Differences

- Power
 - Is Electrical Service Available?
 - 110v, 220v ?
 - If 220v, is it 1Phase or 3 Phase
 - Gas or Diesel
 - PTO
 - Gravity (not usually a good option)
 - SOLAR

- Soils
 - Clay
 - Loam
 - Sandy

	MAXIMUN	I PRECIPI	TATION RA	TES: INCH	ES PER HO)UR (MILLI	METERS P	er hour)
	0 to 5%	6 slope	5 to 8% slope		8 to 12% slope		12%+ slope	
SOIL TEXTURE	cover	bare	cover	bare	cover	bare	cover	bare
Course sandy soils	2.00 (51)	2.00 (51)	2.00 (51)	1.50 (38)	1.50 (38)	1.00 (25)	1.00 (25)	0.50 (13)
Course sandy soils over compact subsoils	1.75 (44)	1.50 (38)	1.25 (32)	1.00 (25)	1.00 (25)	0.75 (19)	0.75 (19)	0.40 (10)
Light sandy loams uniform	1.75 (44)	1.00 (25)	1.25 (32)	0.80 (20)	1.00 (25)	0.60 (15)	0.75 (19)	0.40 (10)
Light sandy loams over compact subsoils	1.25 (32)	0.75 (19)	1.00 (25)	0.50 (13)	0.75 (19)	0.40 (10)	0.50 (13)	0.30 (8)
Uniform silt loams	1.00 (25)	0.50 (13)	0.80 (20)	0.40 (10)	0.60 (15)	0.30 (8)	0.40 (10)	0.20 (5)
Silt loams over compact subsoil	0.60 (15)	0.30 (8)	0.50 (13)	0.25 (6)	0.40 (10)	0.15 (4)	0.30 (8)	0.10 (3)
Heavy clay or clay loarn	0.20 (5)	0.15 (4)	0.15 (4)	0.10 (3)	0.12 (3)	0.08 (2)	0.10 (3)	0.06 (2)

Sandy soil

Drainage (unavailable) Saturation Field capacity

Readily Available Water RAW

Deficit Available Water DAW

Plant damage Minimally available water

Wilting point

Dry Soil particles only

DESIGN PARAMETERS

- HOW MANY INCHES PER WEEK?
 - COST vs UTILITY
 - EMITTER FLOW RATE vs ROW LENGTH vs
 DIAMETER OF DRIPPERLINE vs PRECIP RATE
 - PUMP SIZE vs RUN TIME
 - ROW WIDTH vs ROOT ZONE WIDTH
 - MANUAL RUN TIME vs AUTOMATIC RUN TIME

			ROW CROP			
	TOTAL WA	ATER DESIGN	12" TAPE	BERRIES 18"	BERRIES 24"	BERRIES 36"
		ZONE #	DRIPPERLINE	DRIPPERLINE	DRIPPERLINE	DRIPPERLINE
А	VERAGE	E ROW LENGTH (FT)	500	500	500	500
		NUMBER OF ROWS	1	1	1	1
	V	/IDTH OF ROW (feet)	3	4	4	4
		Inches Per Week	1	1	1	1
		Crop Factor	1	1	1	1
	Gallo	ons Per Day Per Field	1038.33	1384.44	1384.44	1384.44
	Gall	ons Per Day Per Row	1038.33	1384.44	1384.44	1384.44
		Tubing Amount (ft)	500	500	500	500
		WATER PER HOUR				
	En	nitter Spacing(inches)	12.00	18.00	24.00	36.00
		Emitter Output (gph)	0.24	0.55	0.55	0.55
		Output Per Row (gph)	120.00	183.33	137.50	91.67
	(Output Per Row (gpm)	2.00	3.06	2.29	1.53
	(Output Per Field (gph)	120.00	183.33	137.50	91.67
	Ou	tput Per Field (gpm)	2.00	3.06	2.29	1.53
		ZONE ANALYSIS				
	Zon	e Run Time (hours)	8.65	7.55	10.07	15.10
	PR	ECIP RATE (in/hr)	0.128	0.147	0.11	0.074

	TOTAL W	ATER DESIGN	ROW CROP 12" TAPE	BERRIES 18"	BERRIES 24"	BERRIES 36"
		ZONE #	DRIPPERLINE	DRIPPERLINE	DRIPPERLINE	DRIPPERLINE
А	VERAGE	E ROW LENGTH (FT)	500	500	500	500
		NUMBER OF ROWS	1	1	1	1
	V	VIDTH OF ROW (feet)	3	4	4	4
		Inches Per Week	2	2	2	2
		Crop Factor	1	1	1	1
	Gallo	ons Per Day Per Field	2076.67	2768.89	2768.89	2768.89
	Gall	ons Per Day Per Row	2076.67	2768.89	2768.89	2768.89
		Tubing Amount (ft)	500	500	500	500
		WATER PER HOUR				
	En	nitter Spacing(inches)	12.00	18.00	24.00	36.00
		Emitter Output (gph)	0.24	0.55	0.55	0.55
		Output Per Row (gph)	120.00	183.33	137.50	91.67
	(Output Per Row (gpm)	2.00	3.06	2.29	1.53
	(Output Per Field (gph)	120.00	183.33	137.50	91.67
	Ou	tput Per Field (gpm)	2.00	3.06	2.29	1.53
	7	ZONE ANALYSIS	47.04	45.40	00.44	00.04
	Zor	ne Run Time (hours)	17.31	15.10	20.14	30.21
	PR	ECIP RATE (in/hr)	0.128	0.147	0.11	0.074

		ZONE #	BLUEBERRIES	BLUEBERRIES	BLUEBERRIES	BLUEBERRIES
A	VERAGE	E ROW LENGTH (FT)	200	200	200	200
		NUMBER OF ROWS	20	20	20	20
		/IDTH OF ROW (feet)	4	8	4	8
		Inches Per Week	1	2	1	1
		Crop Factor	1	1	1	1
	Gallo	ons Per Day Per Field	11075.56	44302.22	11075.56	22151.11
	Galle	ons Per Day Per Row	553.78	2215.11	553.78	1107.56
		Tubing Amount (ft)	4,000	4,000	4,000	4,000
		WATER PER HOUR				
	En	nitter Spacing(inches)	24.00	24.00	24.00	24.00
		Emitter Output (gph)	0.55	0.55	0.91	0.91
		Output Per Row (gph)	55.00	55.00	91.00	91.00
	C	Output Per Row (gpm)	0.92	0.92	1.52	1.52
	(Output Per Field (gph)	1100.00	1100.00	1820.00	1820.00
	Out	tput Per Field (gpm)	18.33	18.33	30.33	30.33
		ZONE ANALYSIS				
	Zon	e Run Time (hours)	10.07	40.27	6.09	12.17

Maximum Lateral Lengths (0% Slope)

16 mm (0.630 x 0.540) Aqua-line[™] PC

GPH	GPH PSI Inlet	Emitter Spacing (inches)									
Urn		12	18	24	30	36	42	48	60		
	25	314	437	546	647	741	829	913	1069		
0.42	35	404	562	703	832	953	1066	1174	1375		
0.42	45	469	651	815	965	1104	1236	1361	1594		
	55	521	723	904	1071	1226	1372	1511	1770		
	25	269	371	462	546	624	697	766	895		
0.57	35	346	477	595	702	802	896	985	1152		
0.57	45	401	553	689	814	930	1039	1142	1335		
	55	445	614	765	904	1032	1153	1268	1482		
	25	195	270	338	401	459	513	565	662		
0.9	35	251	348	435	516	590	661	727	852		
0.5	45	290	403	505	597	684	765	843	987		
	55	322	448	560	663	759	850	936	1096		

18 mm (0.720 x 0.620) Aqua-line[™] PC

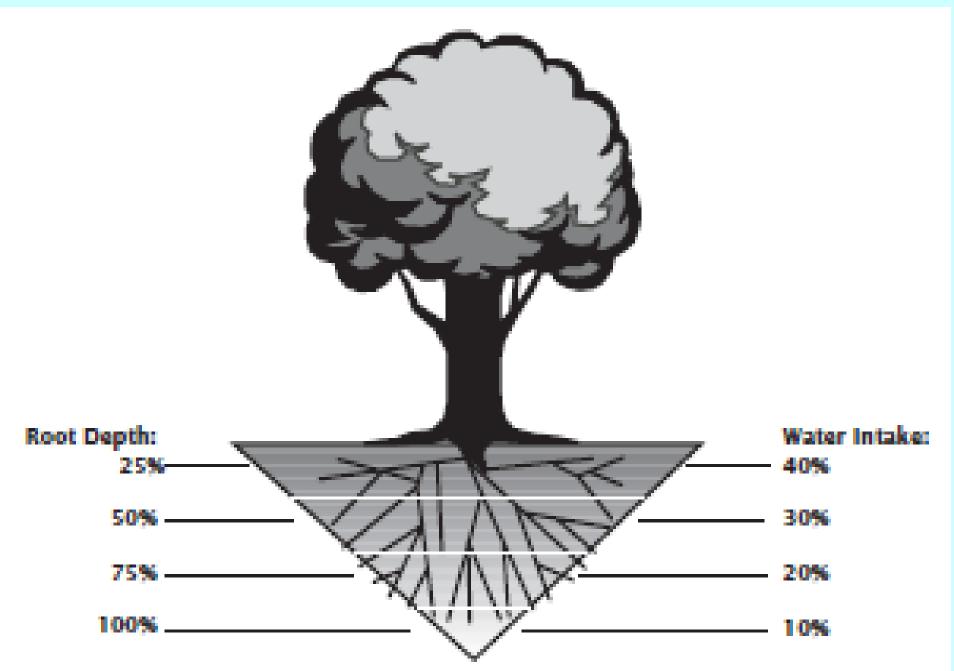
GPH	PSI Inlet	Emitter Spacing (inches)								
V III	T OF IIIICL	12	18	24	30	36	42	48	60	
	25	360	496	619	730	834	932	1025	1198	
0.53	35	463	639	796	940	1074	1199	1319	1542	
0.00	45	536	740	922	1089	1244	1390	1528	1787	
	55	595	822	1024	1209	1381	1543	1697	1984	
	25	257	355	442	522	597	667	733	857	
0.9	35	331	457	569	672	768	858	943	1102	
0.8	45	383	529	659	779	890	994	1093	1277	
	55	426	588	732	865	988	1103	1213	1418	

20 mm (0.800 x 0.700) Aqua-line[™] PC

GPH PSI Inlet		Emitter Spacing (inches)									
Grn	Former	12	18	24	30	36	42	48	60		
	25	519	713	887	1045	1192	1331	1462	1707		
0.42	35	668	918	1141	1345	1534	1712	1881	2196		
0.42	45	774	1064	1322	1558	1778	1984	2180	2545		
	55	859	1181	1468	1730	1974	2203	2420	2826		
	25	453	616	760	891	1013	1127	1235	1438		
0.57	35	583	793	978	1147	1303	1450	1589	1850		
0.07	45	676	919	1133	1329	1510	1681	1842	2144		
	55	751	1020	1258	1475	1677	1866	2045	2380		
	25	321	442	549	647	739	824	905	1057		
0.9	35	413	569	707	833	950	1060	1165	1360		
0.9	45	479	659	819	965	1101	1229	1350	1576		
	55	532	731	909	1072	1223	1364	1499	1750		

* Minimum of 15 psi at the end of the lateral

HIGH FREQUENCY SCHEDULING


• MORE START TIMES FOR SHORTER PERIODS OF TIME

- NORMAL Every other day for 5 consecutive hours
- HIGH FREQUENCY Every other day for 1 hour on then 1 hour off, repeated 5 times

TABLE 3-3: SOIL INFILTRATION AND WETTING PATTERN

Soil Type	Maximum Infiltration Rate	Wetting Pattern	Maximum Wetted Diameter	Available Water (AW)
Coarse (sandy loam)	.72 - 1.25 inches per hour	Coarse	1.0 - 3.0 feet	1.4 inches per foot
Medium (loam)	.2575 inches per hour	Medlum	2.0 - 4.0 feet	2.0 inches per foot
Fine (clay loam)	.1325 inches per hour	Fine	3.0 - 6.0 feet	2.5 inches per foot

70% of water is taken up in the top 50% of the root zone.

Water Movement in Soils

This discussion of water movement in soils is a summary of pages 70 through 74 in the text, *Irrigation* 5th Ed.

During irrigation, initial water movement at the point of entry is caused by gravity. Beyond that point, water moves in all directions due to capillary forces, and downward due to gravity.

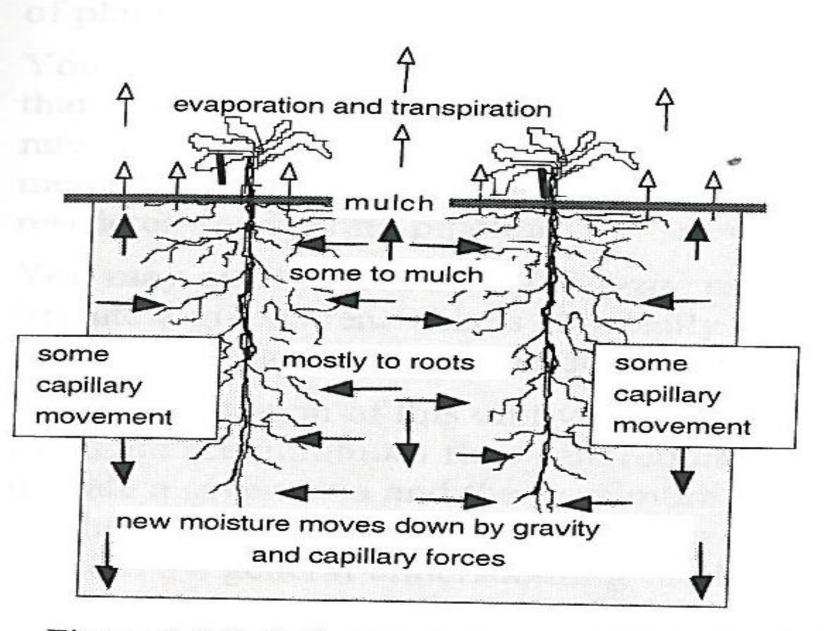
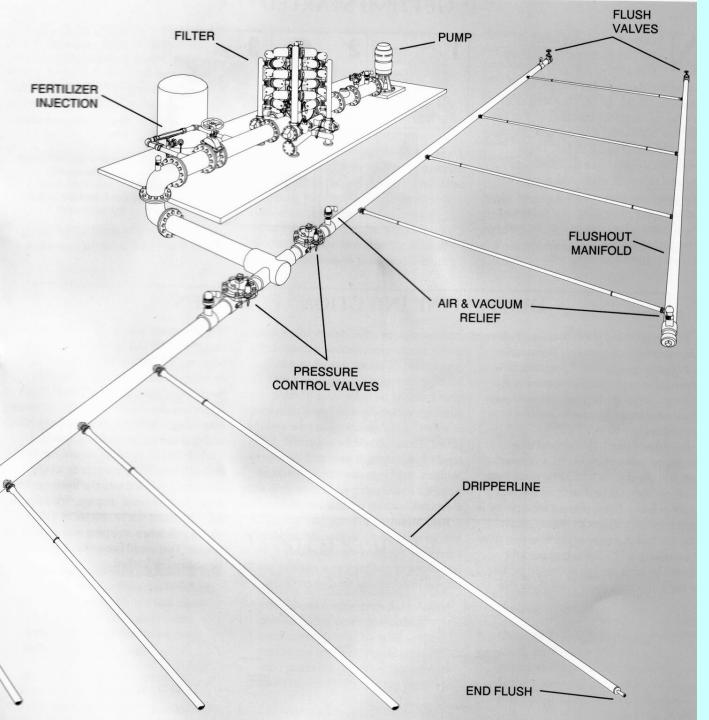



Figure 1.2-9. Soil water movement following irrigation or rainfall.

.18gph Emitter Flow rate @ 24" Emitter Spacing @ 14" deep

Anatomy of a Drip System

PUMP STATION

- Centrifugal Lake or Pond
- Submersible Well, Lake

FILTRATION

- Manual Clean or Automatic Backflush
- Disc Filter
- Screen Filter
- Media Filter
- 120 to 200 Mesh Filtration Needed Depending on Filtration Needs of Emitter.

Fertilizer-Chemical INJECTORS

- Electrical / Non-Electrical
- Venturi type
- Pump type
- Combination of Both

BACKFLOW PREVENTION

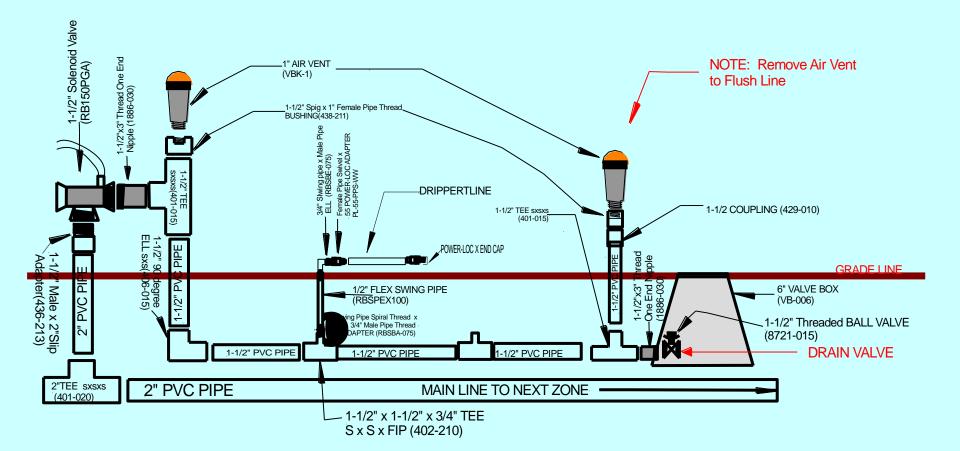
- Check Valves
 - Inline Check Valve to Prevent Water Flowing Back Through System.
- Chemical Backflow Preventers
 - Chemigation Check Valves
 - Atmospheric Vacuum Breakers
 - Double Check Assemblies
 - Reduced Pressure Backflow Preventor

MAIN LINE PIPING

- Main Line Valve
- Main Line Flush
- Main Line Drain
- Main Line Sizing is a Different Procedure Than Sub-main Line.

ZONE CONTROLS

- Valves
- Pressure Regulators
- Air Vents
- Disconnects
 - Unions
 - Flanges
 - Cam-loc
 - Grooved (vitaulic) fittings


SUB-MAIN

- Risers
- Flush Valves
- Drain Valves
- Air Vents

ZONE DETAIL 20-40gpm (Z-REV-ANGLE-20-40-3/4)

MPR Suppy Company
314-426-4838
Fax 314-426-1382
Prepared By Craig Pisarkiewicz

JOB_	
ZONE	
DATE _	

DRIPPERLINE

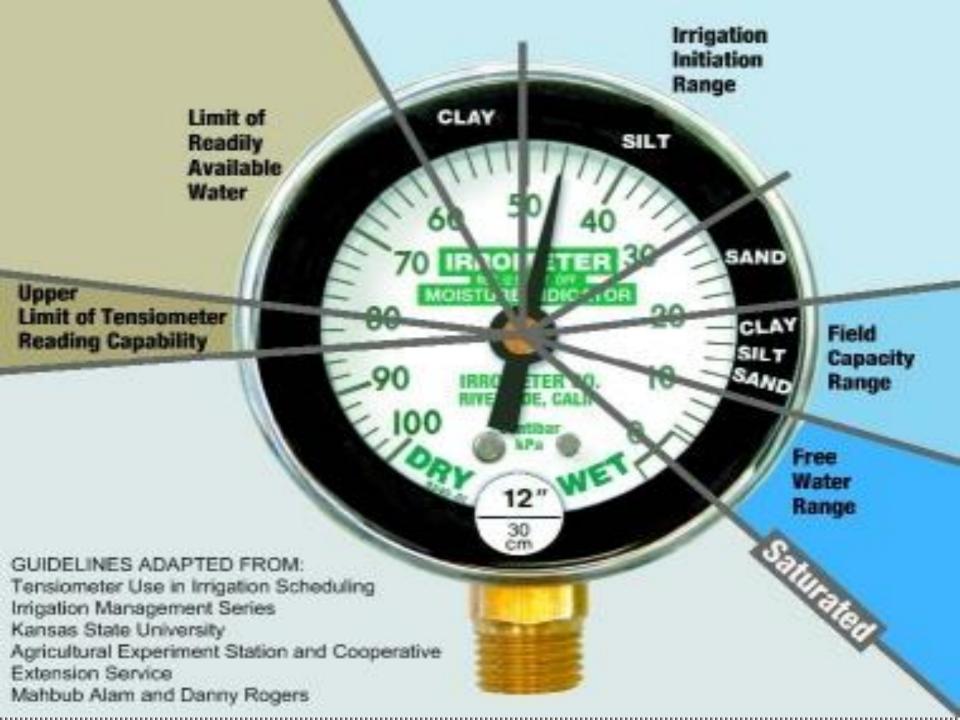
• DRIP TAPE vs HEAVYWALL DRIPPERLINE

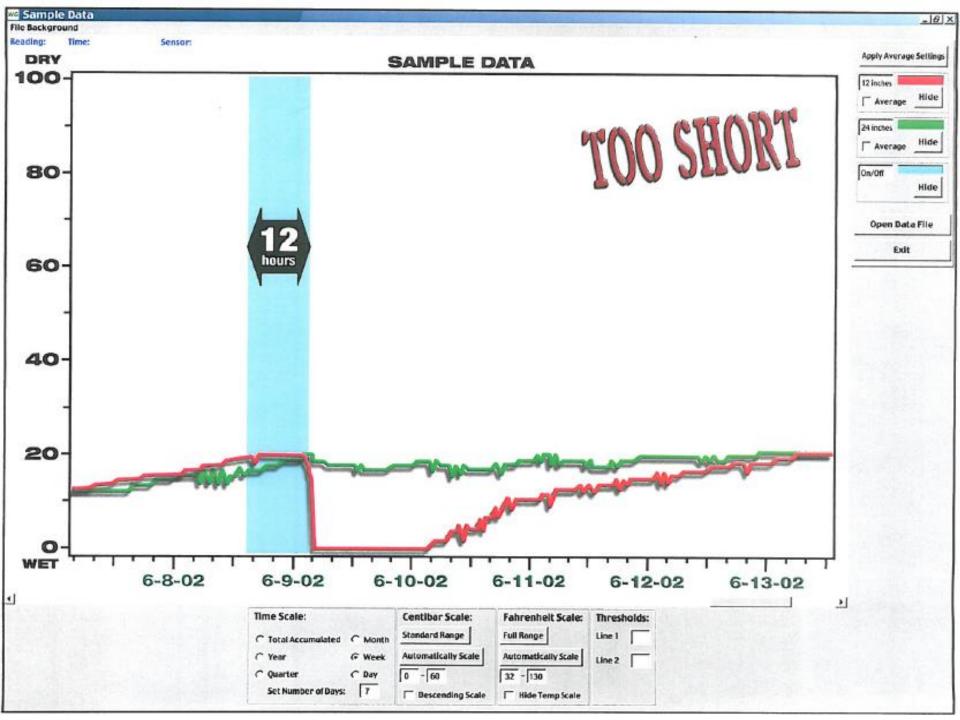
• Pressure Compensating vs Non-Pressure Compensating

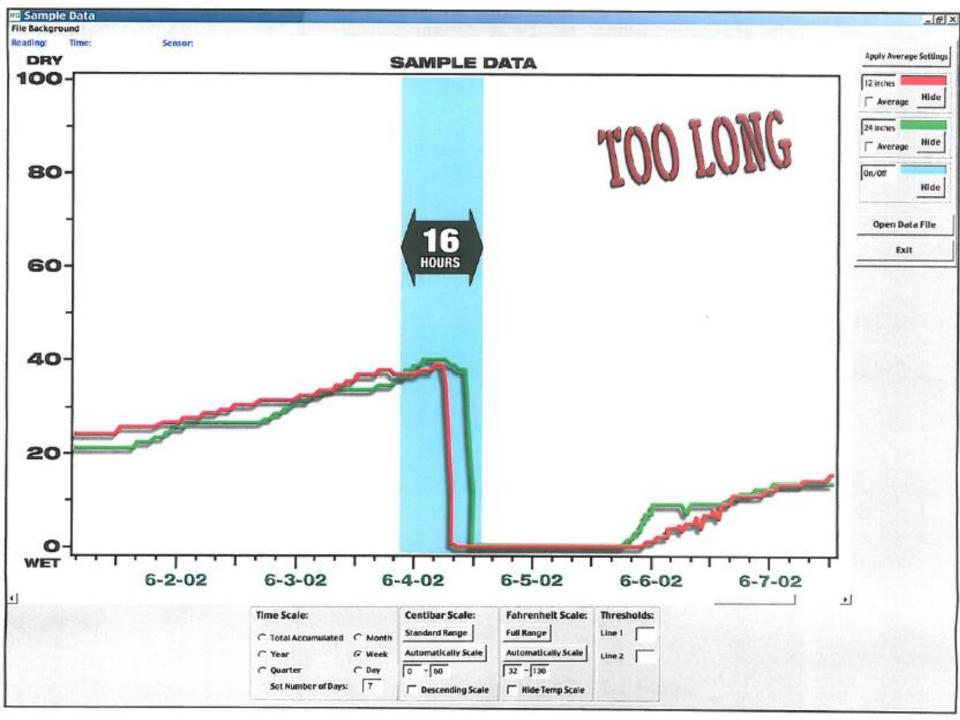
• Inline vs Online

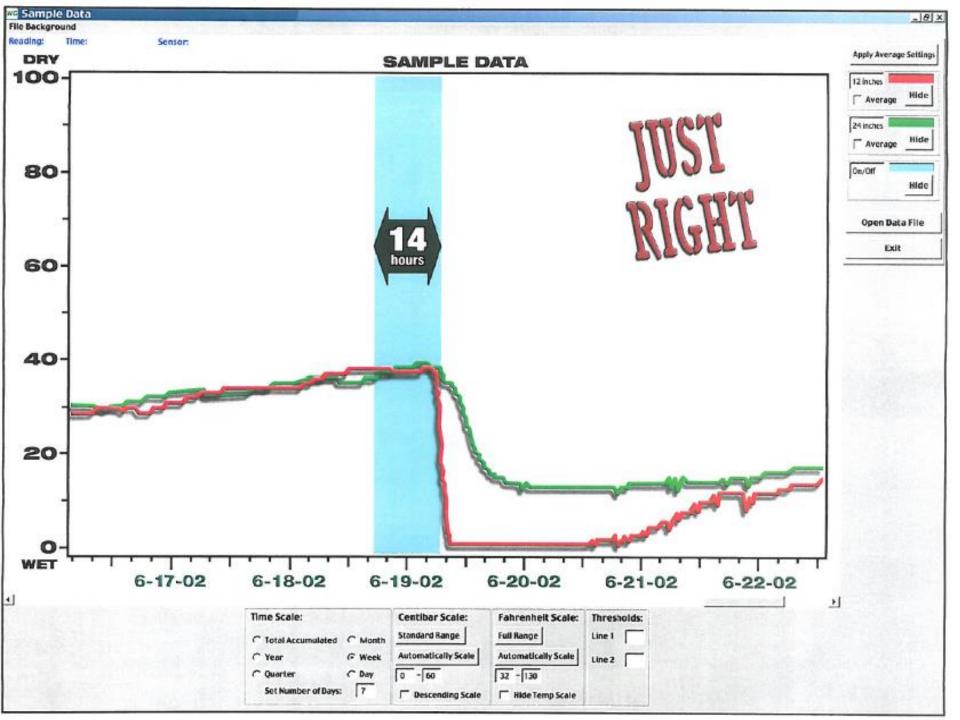
CONTROLLERS

- Any Good Quality Outdoor Turf Controller
 - Electric
 - Battery operated
 - Radio or Modem operated








OTHER WAYS TO CONTROL SOIL MOISTURE

- Controllers that measure ET
- Soil moisture sensors

COSTS?

- In Field Products: filter, main & sub-main piping, valves, pressure regulators, air vents, risers, dripperline, all fittings, etc
 - \$500 \$1000 per acre
 - \$1. 50 \$2.00 per vine

COSTS?

- Additional Costs
 - Labor / Installation
 - Electrical Service
 - Getting Electric Service to Field
 - Electrician
 - Pump Station
 - Well drilling
 - Pump house
 - Water tap

Irrigation, Sixth Edition is:

irrigation.org

- The cornerstone for promoting efficient irrigation technologies, products, and services for the production of food, fiber and fuel, and to help maintain the landscapes where we live.
- The most up-to-date compilation of irrigation topics. divided into 30 chapters, covering agricultural, landscape, turfgrass and other applications of irrigation systems.
- A must-have reference for all water managers and those interested in seeking certification or advancing their professional knowledge.

REFERENCE BOOKS

Drip and Micro Irrigation for Trees, Vines, and Row Crops				
Authors:	Charles M. Burt, PE, Ph.D,			
	Stuart W. Styles, PE			
Fertigation				
Authors:	C. Burt			
	K. O'Conner			
	T. Ruehr			
Copies may be ordered from:				
The Irrigation Training & Research Center (ITRC)				
Bioresource and Agricultural Engineering Department				
California Polytechnic State University				
San Luis Obispo, CA 93407				
(805) 756-2434				
www.itrc.org				