One major fact revealed by the study is improvements that have occurred in the swine industry. Agriculture Swine Focus team is researching the changes that have occurred in the pigs' health and improved product for consumers by moving pigs inside.

In years past, humans could become infected with lungworms. Outbreaks fell by the 1970s affecting only 11% of farms. “In the past decade, lung worms were rarely seen,” said Beth Young, University of Missouri, Commercial Agriculture Program, swine veterinarian. Young spoke at the 2009 Swine Institute held in Columbia November 10.

“Likewise, 78 to 94% of pigs were infected with kidney worms in the 1940s, and now infestations are rarely seen,” said Young. “Trichinella was found in at least 6% of pigs in the 1940s and now its presence is only detected at .0007%.” Scientists believe that drop is because pigs are not feeding on garbage and have no access to wildlife in CAFO facilities.

In years past, humans could become infected with trichinella by eating infected pork. The only real danger now of contracting trichinella via meat consumption is from eating game meat.

Toxoplasma was noted in 42% of sows in the 1970s and is now down to 6%. Since pigs are confined, they are not exposed to cats—carriers of the parasite.

Toxoplasma infections in humans have been reduced, not only by reducing the infection in pork, but through education. For example, humans have learned to take extra care when changing kitty litter and thereby have greatly reduced the possibility of infection.

Young pointed out that many other swine diseases have shown significant decreases or eradication since the move to confined operations. The list includes swine dysentery, atrophic rhinitis, actinobacillus pleuropneumoniae, brucellosis, classical swine fever (hog cholera), and pseudorabies.

“Animal rights (as opposed to animal welfare) organizations are quick to criticize CAFOs,” said Young. “But evidence of the decline or eradication of these diseases cannot be refuted, nor easily attributed to other circumstances.”

Commercial Agriculture researchers, veterinarians, and producers have the responsibility of ensuring a safe product for consumers while improving the welfare of the feed animals. These studies prove success in that area.
Missouri Beef Producer and Feed Mill Supplement Preference and Use Survey Results

By Justin Sexten, Beef Nutritionist

During the winter of 2009 the University of Missouri Extension Commercial Agriculture Program, Missouri Corn Merchandising Council, and Missouri Cattle and Corn Steering Committee worked together to evaluate Missouri beef producer and feed mill ingredient use and preferences. The project was sponsored by a USDA Value Added Producer Grant to develop and evaluate business opportunities associated with distillers grains use.

During the study, 2,127 Missouri cattle producers were surveyed to evaluate producer preferences for supplement type, source, delivery method, and volume relative to operational characteristics. Surveys were returned by 581 producers from across the state. Exhibit 1 illustrates survey locations using red circles relative to statewide cattle distribution.

Exhibit 1: Meeting / Survey Locations Relative to Cow Inventory

Most surveyed producers were commercial cow/calf operators (86.8%). Several operations were characterized as stocker/backgrounders (26.5%) while others reported some seedstock production marketing (21.2%). Few surveyed producers reported feedlot capacity (5.5%).

The surveyed producers were representative of the Missouri beef industry as the 2009 Missouri Beef Audit indicated 78% of producers are cow-calf operators, 17% manage stocker cattle, and 2% have cattle on feed.

When asked to rank preferred feed providers, producers ranked local operators, 17% manage stocker cattle, and 2% have cattle on feed. When asked to rank preferred feed providers, producers ranked local feed mills first, feed dealers second, cooperatives third, and commodity brokers fourth.

Most surveyed producers utilize supplements. Cow calf operators supplemented 86.1% of breeding females while 80.2% of retained or purchased calves were supplemented. The supplement preferences for these groups are shown in Exhibit 2.

Exhibit 2: Preferred Supplement Rankings

<table>
<thead>
<tr>
<th>Breeding Females Supplement</th>
<th>Calves Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Corn</td>
<td>Corn</td>
</tr>
<tr>
<td>2 Commercial</td>
<td>Commercial</td>
</tr>
<tr>
<td>3 Commodity blend</td>
<td>Commodity blend</td>
</tr>
<tr>
<td>4 Corn gluten feed</td>
<td>Corn gluten feed</td>
</tr>
<tr>
<td>5 Soybean hulls</td>
<td>Distillers grains</td>
</tr>
<tr>
<td>6 Distillers grains</td>
<td>Soybean hulls</td>
</tr>
<tr>
<td>7 Corn silage</td>
<td>Corn silage</td>
</tr>
<tr>
<td>8 Soybean meal</td>
<td>Soybean meal</td>
</tr>
<tr>
<td>9 Wheat middlings</td>
<td>Wheat middlings</td>
</tr>
</tbody>
</table>

The top three supplements for both breeding females and retained or purchased calves were corn, commercial supplements, and commodity blends. Not surprising, corn is the preferred supplement given. The average respondent raised 63 acres of corn and prefers to feed processed grains.

Producer preferences for supplement type are shown in Exhibit 3. Supplement type preferences support producer feed rankings as processed grains, pellets or cake, and dry meals were the top three rankings for both cow calf and backgrounding operations.

Exhibit 3: Preferred Supplement Types

<table>
<thead>
<tr>
<th>Breeding Females Supplement</th>
<th>Calves Supplement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Processed grain</td>
<td>Processed grain</td>
</tr>
<tr>
<td>2 Pellet/Cake</td>
<td>Dry meal</td>
</tr>
<tr>
<td>3 Dry meal</td>
<td>Pellet/Cake</td>
</tr>
<tr>
<td>4 Block/Tub</td>
<td>Unprocessed grain</td>
</tr>
<tr>
<td>5 Unprocessed grain</td>
<td>Block/Tub</td>
</tr>
<tr>
<td>6 Liquid</td>
<td>>20% moisture meal</td>
</tr>
<tr>
<td>7 >20% moisture meal</td>
<td>Liquid</td>
</tr>
</tbody>
</table>

Most surveyed producers were commercial cow/calf operators (86.8%). Several operations were characterized as stocker/backgrounders (26.5%) while others reported some seedstock production marketing (21.2%). Few surveyed producers reported feedlot capacity (5.5%).

During the study, 2,127 Missouri cattle producers were surveyed to evaluate producer preferences for supplement type, source, delivery method, and volume relative to operational characteristics. Surveys were returned by 581 producers from across the state. Exhibit 1 illustrates survey locations using red circles relative to statewide cattle distribution.

When asked why certain feeds were preferred, producers selected different reasons depending on operational type as shown in Exhibit 4. Cow calf producers placed more emphasis on the ability to store and deliver the feed to the cattle than backgrounding operations who indicated supplement cost was the most significant reason for selecting feeds.

When selecting supplements for retained or purchased calves, backgrounding operations still indicated the importance of handling and delivery of product before animal performance. The low ranking of liquid and wet feeds supports the conclusion producers prefer feeds with favorable handling and feeding characteristics as these feeds are more labor and equipment intensive to handle and deliver.

Exhibit 4: Reasons for Current Supplement Preferences

<table>
<thead>
<tr>
<th>Breeding Females Reason</th>
<th>Calves Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Ability to store</td>
<td>Supplement cost</td>
</tr>
<tr>
<td>2 Delivery method to livestock</td>
<td>Ability to store</td>
</tr>
<tr>
<td>3 Supplement cost</td>
<td>Delivery method to livestock</td>
</tr>
<tr>
<td>4 Familiar with feedstuff</td>
<td>Certain of animal performance</td>
</tr>
<tr>
<td>5 Certain of animal performance</td>
<td>Familiar with feedstuff</td>
</tr>
<tr>
<td>6 Load size</td>
<td>Load size</td>
</tr>
<tr>
<td>7 Transportation cost</td>
<td>Transportation cost</td>
</tr>
</tbody>
</table>

The two most common problems associated with changing supplementation programs were handling (48.1%) and cost (39.0%) followed by availability, knowledge, and habit.

Handling problems listed were associated with general handling, storage, access to a mixer, delivery to animals, general facilities, and delivery associated with load size. Costs listed were labor cost, equipment cost, transportation cost, and costs associated with small herd sizes. Feed availability was related to access and steady supply of products. Knowledge concerns reported were related to animal performance and intake regulation.

Due to recent transportation cost increases, producers were asked to indicate what load size best suited their operation’s feed needs. Producers prefer to receive feed in small loads of 3 tons or less (44%), while 31.7% prefer to have feed delivered in medium sized loads of 4 to 12 tons. Receiving 13 to 22 tons of feed at a time was preferred by 4.5% of producers. Feed mills indicated an ideal load size of 10 ton with a 2.5 ton minimum, indicating feed mills can deliver ideal load size to one or several producers depending
on operation needs.

Following the beef producer survey, 565 Missouri feed mills were contacted to determine current distillers grains (DDGS) and commodity feed use by feed mills servicing the beef industry. A phone survey completed by 180 feed mills evaluated alternative feed delivery systems and current feed market trends.

Among the responding feed mills, the beef industry represented 62.8% of feed volume. Commodity feeds that ranked the highest with beef customers were corn (1st), soybean hulls (2nd), and distillers grains (3rd). Feed mills marketed 64.3% of feed in bulk and 35.8% in sacks.

Currently 56.4% of Missouri feed mills purchase distillers grains from Missouri ethanol plants with the remainder of DDGS sourced primarily from Illinois, Indiana, Iowa, and Kansas. Among feed mills currently marketing DDGS, 74.7% provide nutrient analysis for the DDGS to customers.

Feed mills listed the economy (23.5%) followed by handling (20.6%) as the largest drawback for expanded sales of DDGS. Handling related to flow ability is reported as one of the largest drawbacks associated with DDGS. Therefore, businesses are less likely to increase sales of a product that is difficult to use.

Cost (32.5%) followed by handling (25%) were cited as the largest barriers to increased DDGS use by customers as shown in Exhibit 5. The economy may contribute to cost being cited as a limitation to customer use of DDGS. Additionally limited feed mill knowledge of DDGS feeding value relative to alternative feedstuffs may contribute to cost cited as a barrier as DDGS is typically priced higher than alternatives such as corn gluten feed and soybean hulls.

Exhibit 5: Largest Barrier to Increased DDGS Use by Customers

Feed mills not currently marketing distillers grains cite storage (45.7%) followed by handling (20.1%) and demand (16.4%) as the major reasons why they do not handle distillers grains.

Winter was listed as the peak season for feed sales while summer was listed as the slowest season for feed sales. This response was expected since Missouri is primarily a cow-calf state with a significant forage-based stocker industry. Combined with limited feedlot numbers in state serviced by feed mills, slow summer feed sales are reflective of Missouri beef industry. Ethanol plants run year round presenting purchasing opportunities for producers who can store feeds until winter.

Expanded distillers grains use by Missouri beef producers will likely be a result of product handling or distribution improvements. Blending distillers grains into mixed and finished feeds offers the opportunity to improve product flow while developing a complete supplement.

DDGS is an excellent forage supplement for beef cattle due to high fat and low starch content. Unfortunately, these feeding characteristics are in direct contrast to quality pellet characteristics. Blending DDGS with other feeds also offers the potential to create DDGS pellets.

The Commercial Agriculture Program would like to thank the Missouri Corn Merchandising Council, USDA Value-added Producer Grant, Missouri Beef Producers and Missouri Feed Mills for project support and participation.
Kloppe Dairy receives 2009 Reproduction Award

By Michelle Proctor, Senior Information Specialist

In 2009 the Dairy Cattle Reproduction Council (DCRC) created a Reproduction Awards program to recognize and honor dairy producers from across the United States who have successfully implemented management procedures to achieve high reproductive efficiency.

In 2009 the Dairy Cattle Reproduction Council (DCRC) created a Reproduction Awards program to recognize and honor dairy producers from across the United States who have successfully implemented management procedures to achieve high reproductive efficiency.

Scott Poock, University of Missouri Extension Commercial Agriculture Program, dairy veterinarian, visited the Kloppe Dairy following a request from their herd vet, Dr. Steve Strubbberg of the Hermann Veterinary Clinic. Dr. Poock taught Dr. Strubbberg and the Kloppe family how to use the latest ultra-sound equipment to determine pregnancies in the herd and specifically—fetal sexing.

While examining the Kloppe’s DHI records, Poock learned that their preg rate was at 31%. Any figure above 20% is within the top 10% nationally—above 30% ranks in the top 1% nationally. The Kloppe Dairy cows have an average days open of 82. Their calving interval is 11.9 months. Ninety-six percent of their cows get pregnant by open of 82. Their calving interval is 11.9 months. Ninety-six percent of their cows get pregnant by

Kim Kloppe serves as farm manager. Kim is the father of Jill Gerling and Karl Kloppe. Karl is assistant herdsman while Jill is herd manager and oversees the reproductive program. Karl and Jill are the third generation on the farm.

Keith Kloppe is a mechanic. Lynette, the only sister on the farm, milks the cows. Rick Kloppe is involved with feeding. Neil Kloppe handles both herding and milking. Wendy Oeulrch, Jill’s cousin, assists as herdsman.

“Our current protocols were developed by a former employee who graduated with a BS in Animal Sciences from the University of Missouri,” said Jill Gerling. “He had extensive experience working with large dairy herds. I was trained by him and also attended an AI school. I am responsible for carrying out reproductive protocols, including heat detection, shot administration, and breeding.”

The Kloppe begins breeding heifers at 13 months of age, as long as they are healthy and at the appropriate size. “If a heifer is too small or in poor health, we wait an extra cycle or two before breeding her,” said Gerling. “We breed heifers exclusively on standing heats.”

The Kloppe believes that genetics play an important role in their reproductive program. They utilize a mating program through CRI/Genex to select their AI sires and have their cows appraised by the American Jersey Cattle Association. To find the bulls that best match their cows, they use a variety of sires from CRI/Genex, ABS, and Select Sires.

“We tend to select more heavily for type traits than production traits,” said Gerling, “because we believe a cow that is healthy, structurally sound, and has greater longevity will be more profitable in the long run.”

That philosophy has proven sound for The Kloppe Dairy Farm, with their incredible pregnancy rates falling within the top one percent of the nation. For producers looking to improve reproductive performance in their herd, Kloppe advises, “Focus on maintaining good records and build a good relationship with your veterinarian to keep cow health at top-of-mind.”

Estate Planning part III: Using Trusts

By Vern Pierce, PhD, JD, Assoc. Extension Professor of Ag Law, Business, & Economics

Trusts are among the many tools available in estate planning. They may provide more reliable control over your estate than even a Will. A trust is created by a legal document which transfers control of certain property or assets you determine (including money) and legal title to those assets to a trustee you may appoint. The trust document instructs the trustee how you wish to manage and distribute the trust income and principal, subject to limitations set out in state law.

Every trust has three primary pieces: (1) the “trustee” whom, you may choose, (2) the “corpus” or “body” of the trust. This is simply “the stuff in the trust” (property, money, etc.) and, (3) the beneficiaries you identify to receive income and principal (i.e. your trust may be set up to provide regular cash payments to your grandchildren for 10 years and appoint your spouse as the trustee). You may establish a trust today (non-testamentary trust) or have one established when you die as directed by your will (testamentary trust).

There are several types of trusts to consider as you plan the transfer of your estate to your designated beneficiaries. Each should be evaluated by you, your family, and your attorney to reach the desired results. The primary types of trusts include: revocable and irrevocable living trusts, testamentary trusts, and charitable trusts. One of the most commonly used is the revocable living trust. This is created by transferring property into the trust while you are living (as opposed to having the trust created as directed by your Will after death). Once the revocable living trust is in place, you may retain the power to amend, modify or even revoke the trust for your entire lifetime should your family situation or your wishes change.

One common use of this type of trust is that you can direct the trustee to pay you the income that is generated from the trust’s assets for the rest of your life. The trust may further direct the trustee that income derived from the trust assets that was paid to you during your lifetime should now be paid to your spouse for her lifetime. Finally, you can direct that the entire remaining balance of the trust be distributed to whomever you wish, children, charitable organizations, etc.

There are advantages and disadvantages to each type of trust that you should understand and discuss with your attorney. One of the best advantages of the revocable living trust is in assuring that management of your assets and property is done by someone you select if there should ever become a time when you cannot make that choice or are incapacitated in some way.
Seanicca Edwards receives Albert R. Hagan Award

By Michelle Proctor, Senior Information Specialist

Seanicca Edwards, University of Missouri Extension Commercial Agriculture Program, swine economist, has been awarded the Albert R. Hagan Award in Agricultural Economics.

Hagan was a Professor of Agriculture Economics at the University of Missouri from 1940 until his retirement in 1980. Dr. Hagan also served as an agriculture advisor to many countries around the world on behalf of the USDA, United Nations FAO, and the University.

Edwards joined the Commercial Agriculture Program as a swine economist in July of 2009. She received her B.S. in agricultural business and her M.S. in Agricultural Economics from Mississippi State University. She is currently working on her Ph.D. in Agricultural Economics at the University of Missouri, Columbia.

In addition to her varied duties such as meeting with and advising producers throughout the state, Ms. Edwards is conducting a study on the economic impact of livestock operations in Vernon County for the Swine Focus Team. She is also a member of the Commercial Agriculture Program’s action team on animal welfare. Her mission is to communicate with producers on animal welfare issues, and educate them in dealing with the ambiguous animal rights movements.
Does rotational grazing have a place on your dairy?

By Joe Horner, Extension Dairy Economist and Stacey Hamilton, Extension Dairy Specialist

The brutal 2009 milk price collapse has prompted dairy producers to re-examine their businesses—looking for ways to cut costs, preserve cash, and improve profitability. Now, some dairy producers are asking, “Would intensive rotational grazing work better on our own dairy than our current system?”

More than ten years of experience at the University of Missouri’s seasonal pasture based dairy at the Southwest Research Center in Mt. Vernon has proven that grass based dairying is a viable alternative model.

In addition to the research station experience, the dairy grazing system has been validated in Missouri by many dairies that have successfully transitioned to grazing. New pasture based dairies have added further enthusiasm to Missouri’s dairy grazing bandwagon.

Still, transitioning to grazing is more than just turning cows out to pasture. Transitioning to pasture systems requires a mind shift. Production per cow is not the leading factor in profit or sustainability in a grazing dairy. If you are seriously considering transitioning to grazing, reread the previous sentence.

Issues that producers may feel are insurmountable include lower milk production, lower gross income, sunk investments in machinery and buildings, lack of grazing understanding by lenders, and fear of running out of feed during droughts. These are legitimate concerns but confident graziers have dealt with all these issues in a systematic way as they made the pasture-based model work for them.

Here are a few common questions and answers regarding transitioning to grazing.

Q: What is the most important thing I need to learn to be successful in a grazing dairy?
A: Learning to budget pasture for optimal quality is critical to making grazing work. This takes some experience, but there are lots of tools to help. Graziers should measure the forage in their paddocks weekly with a rising plate meter and plot their grazing wedge either by hand or on the MU website: http://plantsci.missouri.edu/grazingwedge/

Q: How many acres per cow do I need?
A: An excellent starting rule of thumb is one acre per cow of good grazing land in paddocks. Experienced graziers have pushed stocking rates harder. If you are tighter than this on land, you can still graze, but don’t count on the pasture for all your forage during the grazing season.

Q: Will my current farm work for grazing?
A: Unfortunately many traditional operations have milking facilities located in less than optimal locations for efficient grazing practices. Ideally milking facilities are located centrally on the grazing platform to reduce walking distance for cows to and from paddocks. Farms with milking facilities located on the perimeter of the farm are not prevented from utilizing pasture but may need to make concessions on how and where to graze most effectively. Cows may be sent to the furthest pasture once daily and graze nearer to the milk shed during the other 12 hour period. During periods of heat stress, cows should utilize paddocks (warm season grasses, brassicas, etc.) nearest to the parlor. Cool season paddocks may be grazed in evening to help reduce heat stress to cows.

Q: Will I have to change my milking parlor?
A: Fast throughput milking facilities are critical in maximizing dry matter intake of pasture to cows. Ideally milking times should be less than 2.5 hours per milking to ensure cows have eight to ten hours on pasture between milkings. Producers need to consider the cost-effectiveness of converting an existing milking facility to a higher throughput model by nearly doubling the number of cows milked per side. A simple parabone (70 degree angle) system generally requires 23-26 inches per cow (cow size dependent) thus a double four herringbone may be able to convert to a double eight with minimal to moderate costs. Costs for conversions in the Midwest typically run about $1,000 per cow space. Many producers use their existing facility as the grazing platform is completed and then determine if conversion is needed for their operation.

Q: Will I need to change the grass on my farm?
A: If it is K-31 infected fescue, yes, you will need to change it. The easiest way is to re-grass the whole farm, but most of the transitioning dairies have re-grassed a few paddocks at a time.

Q: How do I pay bills during the transition?
A: Breakeven costs on grazing dairies can be significantly less than conventional dairies. The key is to seriously cut costs and overhead. Debt needs to be kept below $3,000 per cow and amortized over a long period, ideally collateralized by land. Minimizing principal and interest payments in this way allows the dairy the cash flow margin needed when making the transition to a new system.

Dairy producers seriously considering the switch to grazing may want to start collecting information by visiting existing grazing operations, joining a grazing group, subscribing to grazing magazines, as well as reviewing the materials on the MU Grazing website: http://agebb.missouri.edu/dairy/grazing/index.htm
The swine model is changing

By Michelle Proctor, Senior Information Specialist

Although pork productivity numbers have increased significantly in the past 25 years, a number of issues are forcing changes to the production model that built many of our nation’s largest hog firms. Ron Plain, University of Missouri Commercial Agriculture Program economist, cites high feed costs, environmental concerns, climate phobia, and other 21st century issues responsible for forcing the changes.

For the past 25 years, the swine industry has shifted towards large scale, specialized hog production. The producer does not raise feed for his hogs; he buys it. He hires outside help to raise the hogs. The new swine model will be a throw-back to traditional grain-hog systems, where the hog unit is linked to grain production.

“Producers are losing money due to high feed costs, record pork supplies, and weak pork demand,” said Plain. “It’s Economics 101. Over time, the market price must equal the cost of production. If the market price is below the cost of production, producers will go out of business and eventually the market price will go up.”

U.S. pork exports in 2009 were below year-earlier levels for the first time since 1990. The current pork supply outweighs the demand. In 2009, US pork production was 5.3% above trend. Even though producers are under extreme financial pressure and are cutting back, in 2010 pork production is still expected to be 1.0% above the long term trend.

“U.S. pork production was down 1.3% in 2009, but due to a decrease in exports (shipments to China and Hong Kong were down 66% from last year) there was more pork on the US market than in 2008. The only way to move the pork is to cut the price,” said Plain.

In recent years, Japan, Russia, and Mexico have been the world’s leading importers of pork.

China controls 50% of the world’s hogs. Chinese pork production is expected to increase 3.7% in 2010, while the forecast for the rest of the world predicts a decrease of 0.3%.

Russian pork imports may increase in the coming year because of an outbreak of African Swine Fever. ASF poses a serious threat to Russia’s plans to expand their domestic pork production. An increase in Russian pork imports could help the US hog industry.

Erroneous concerns that the H1N1 virus, or as Dr. Plain refers to it, “the non-swine flu”, could be spread by eating pork cost hog producers over $500 million in losses in 2009.

The hog industry has five major issues to tackle if it is to prosper in the 21st century. Dr. Plain defines these as energy issues, climate phobia, the animal rights movement, health concerns, and demographics.

Plain believes that the period of cheap energy is over. The government’s ethanol mandate ensures that each year more corn will go to ethanol production, leaving less for animal feed. Because of the ethanol mandate, feed prices should remain high. This makes it more attractive for hog producers to grow their own feed, rather than buy it. Adding land to their asset package in turn will make hog producers more attractive to lenders.

Energy issues can benefit a hog-grain system in another way. “High fuel costs equal high fertilizer costs. To capture the nutrient value of manure, own the field it is spread on” said Plain.

Plain refers to climate phobia as the fear that the future climate will not be like the climate during the 20th century. Fear of climate change has led to calls for regulations on greenhouse gas emissions. Livestock production is a major emitter of methane, a greenhouse gas.

Proposed Cap and Trade legislation calls for the conversion of acres out of crops and pasture and into timber. The government is proposing tens of millions acres of cropland be converted into timber in order to sequester some of the carbon released when fossil fuels are burned.

Plain believes the animal rights movement, as opposed to the animal welfare movement, is working to bring an end to meat consumption. Their primary tool is legislation which makes livestock and poultry production more expensive and therefore less profitable. “If they are successful in eliminating the profits, the meat industry will disappear,” said Plain. “Corn looks more pastoral than buildings. A hog-corn production model should help soften the image of ‘factory farms’ vilified by animal rights activists.”

Concerns that the use of pharmaceuticals on animals may ultimately make human pharmaceuticals less effective, is reducing the alternatives farmers have for keeping their livestock healthy. It is also reducing the dollars flowing into developing new drugs for treating animal diseases. Banning prophylactic antibiotic use will drive up health care costs as producers will be forced to use more expensive, after-the-fact, disease treatment and suffer greater casualties in the herd.

There is a steady shift occurring in the world’s demographics. Those regions that have high per capita pork consumption such as Europe and East Asia are growing more slowly than regions that consume little pork – the Middle East, North Africa, South Asia.

Rapidly growing governmental spending, combined with a record expansion of the money supply to combat the recession, is likely to result in inflation which will drive up land prices. “We are in the longest recession since the Great Depression,” Plain stated. “The recession will probably drag on longer and recovery will be slow.”

During a period of inflation, real assets: gold, jewels, and real estate usually go up in value faster than bonds or businesses. “If our government doesn’t stop overspending,” speculated Plain, “the value of the dollar will continue to decline and people will shift to owning things rather than holding savings.”

The swine model must change to ensure long-term survival. Perhaps “what goes around comes around” best sums up the return to traditional hog-grain production.
Focus Team Contacts

BEEF TEAM
Joe Horner
Beef/Dairy Economist
(573) 882-9339
HornerJ@missouri.edu
Carol Lorenzen
Meat Scientist
(573) 882-2552
LorenzenC@missouri.edu
John Lory
Environmental Nutrient Management Specialist
(573) 882-7815
LoryJ@missouri.edu
Ryan Millhollin
Project Manager
(573) 882-0068
MillhollinR@missouri.edu
Robert Weaber
Animal Breeding & Genetics Specialist
(573) 882-5479
WeaberR@missouri.edu
Craig Payne
Veterinarian
(573) 882-8236
PayneCa@missouri.edu
Justin Sexton
Beef Nutritionist
(573) 882-8154
SextonJ@missouri.edu

CROPS TEAM
Ray Massey, Team Leader
Crops/Swine Economist
(573) 884-7788
MasseyR@missouri.edu
Jo Henggeler
Irrigation Specialist
(573) 379-5431
HenggelerJ@missouri.edu
John Lory
Environmental Nutrient Management Specialist
(573) 882-7815
LoryJ@missouri.edu
Eugene Stevens
Soils Specialist
(573) 882-2552
StevensE@missouri.edu
Laura Sweats
Plant Pathologist/Entomologist
(573) 884-7307
SweatsL@missouri.edu

DAIRY TEAM
Joe Horner
Dairy/Beef Economist
(573) 882-9339
HornerJ@missouri.edu
John Lory
Environmental Nutrient Management Specialist
(573) 884-7815
LoryJ@missouri.edu
Ryan Millhollin
Project Manager
(573) 882-0068
MillhollinR@missouri.edu
Scott Pock
Veternarian
(573) 882-6359
PockS@missouri.edu
James Spain
Animal Scientist
(573) 882-5995
SpainJ@missouri.edu
Barry Steevens
Animal Scientist
(573) 882-3459
SteevensB@missouri.edu
Joe Zulovich
Structures Engineer
(573) 882-2731
ZulovichJ@missouri.edu
Matt Waldron
Dairy Nutrionist
(573) 882-6354
WaldronM@missouri.edu

SWINE TEAM
Joe Zulovich, Team Leader
Structures Engineer
(573) 882-2731
ZulovichJ@missouri.edu
John Lory
Environmental Nutrient Management Specialist
(573) 884-7815
LoryJ@missouri.edu
Ray Massey
Agricultural Economist
(573) 884-7788
MasseyR@missouri.edu
Ron Plain
Agricultural Economist
(573) 882-0534
PlainR@missouri.edu
Tim Safranski
Genetics/Reproductive
(573) 884-7994
SafranskiT@missouri.edu
Marica Carlson Shannon
Swine Nutritionist
(573) 882-7819
CarlsonM@missouri.edu
Beth Young
Veternarian
(573) 882-8820
YoungB@missouri.edu
Seanica Edwards
Swine Economist
(573) 882-9893
EdwardsS@missouri.edu
Teng Lim
Air Quality Specialist
(573) 882-9519
LimT@missouri.edu

MEATS TEAM
Bryan Wiegand, Team Leader
Fresh Meat
(573) 882-3176
wiegandb@missouri.edu
Ronnie Alewel
Association of Meat Processors
(660) 747-8261
alewel@ialand.net
Andrew Clarke
Processed Meats
(573) 882-2610
ClarkeAD@missouri.edu
Jason Jennings
Association of Meat Processors
(573) 882-2452
JenningsJ@missouri.edu

LEGAL EDUCATION
Vern Pierce
Associate Extension Professor of Ag Law, Business & Economics
(573) 882-8229
PierceV@missouri.edu

Winter Events for 2010

January
 29-30 MO Dairy Forum, Lake Ozark
February
 2-3 Nutrition Management Course, Bradford Farm
 MU Ag Alumni Association, Ag Unlimited, Columbia
 10-11 Missouri Pork Expo, Columbia
 18 Memphis Dairy Day, Memphis
 19-21 Western Farm Show, Kansas City
 22 MO Dairy Profit Seminar, Concordia
 23 MO Dairy Profit Seminar, Mt. Vernon
 24 MO Dairy Profit Seminar, Lebanon
 25 MO Dairy Profit Seminar, Union
 26 MO Dairy Profit Seminar, Jackson
March
 2 Monett Dairy Day, Monett
 2-3 Nutrition Management Course, Bradford Farm
 5 Tri-County Dairy Day, Cole Camp

Nutrient Management Course will focus on the new DNR Nutrient Management Standard

By John Lory, Environmental Nutrient Management Specialist

On February 2-3, the University of Missouri Commercial Agriculture Program will sponsor a nutrient management course focused on the new Missouri Department of Natural Resources (DNR) Nutrient Management Technical Standard for concentrated animal feeding operations (CAFOs).

The new Nutrient Management Technical Standard defines the protocols that permitted animal feeding operations need to use to determine manure application rates and defines conditions where manure applications are restricted. The standard also defines the record keeping and monitoring requirements for manure storages and land application of manure.

The course will provide detailed presentations and discussion on how to interpret and use the new Nutrient Management Technical Standard. Topics will include phosphorus loss assessment including the phosphorus index, plant available nitrogen calculations, and other protocols outlined in the new standard.

The course instructors will include faculty from University of Missouri and representatives from Missouri DNR. Twelve continuing education units (CEUs) for CAFO and Wastewater operators will be awarded. Certified crop advisors will receive 2.5 Soil and Water CEUs, and 9.5 Nutrient Management CEUs.

The course will be held at the University of Missouri Research and Extension Center at Bradford Farm near Columbia, MO. Cost of the course is $185 and includes two lunches. Call Shane Ferguson at 573-884-6311 to register. Pre-registration is required before Tuesday January 26, 2010.

More information about the course including a tentative agenda is available at the website http://nmplanner.missouri.edu/training/index.asp#advanced.